首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A charge-transfer-induced spin transition (CTIST) is observed in the discrete cyanide-bridged complex, {[Co(tmphen)2]3[Fe(CN)6]2}. Single-crystal X-ray diffraction, 57Fe M?ssbauer spectroscopy, and magnetic susceptibility were used collectively to describe the oxidation states of the Co and Fe ions in this cluster as a function of temperature. This pentanuclear complex represents the first example of a CTIST at the discrete molecular level.  相似文献   

2.
Reactions between [M'(III)(CN)(6)](3-) anions (M' = Co, Cr, or Fe) and mononuclear complexes of M(II) ions (M = Cr, Mn, Co, Ni, or Zn) produce a family of pentanuclear clusters {[M(tmphen)(2)](3)[M'(CN)(6)](2)]}. The core of the clusters is formed by five metal ions that are bridged through six CN- linkers into a trigonal bipyramid, with M and M' ions occupying equatorial and axial positions of the bipyramid, respectively. Three of the CN- ligands from each M' center remain terminal and point toward the outside of the cluster, along the trigonal axes. Studies of magnetic coupling in the {[M(tmphen)(2)](3)[M'(CN)(6)](2)]} family of clusters revealed a similarity between the observed magnetic exchange constants and the values estimated for the molecule-based magnets of the Prussian blue family. The type of the magnetic exchange varies across the series, changing from antiferromagnetic for M = Cr and Mn to ferromagnetic for M = Co and Ni. Complexes {[M(tmphen)(2)](3)[M'(CN)(6)](2)]}, which contain diamagnetic Co(III) ions in the axial positions, serve as convenient model compounds for an accurate assessment of the magnetic parameters for the equatorial M ions in the absence of magnetic interactions. The {[Co(tmphen)(2)](3)[Cr(CN)(6)](2)]} cluster exhibits cyanide linkage isomerism, the relative amount of which depends on the synthetic conditions.  相似文献   

3.
Wang ZX  Li XL  Wang TW  Li YZ  Ohkoshi S  Hashimoto K  Song Y  You XZ 《Inorganic chemistry》2007,46(26):10990-10995
A novel zero-dimensional (0D) octacyanotungstate(V)-manganese(II) bimetallic assembly, {[MnII(bipy)2]2(ox)}.{[MnII(bipy)2W(CN)8]2}.4H2O (1) (bipy = 2,2'-bipyridine, ox = C2O42-), was synthesized in methanol solution containing oxalic acid. X-ray analysis shows 1 is crystallized in monoclinic crystal system with C2/c space group and composed of two components of a dimeric Mn2 cation and a quadrate tetrameric Mn2W2 anion. The Mn2 and Mn2W2 moieties are connected by their respective pi-pi stacking to yield the alternative 2D layers, and the 2D layers are linked by hydrogen bonding to form a 3D network. The investigation of the magnetostructural correlation reveals that cyanide and oxalate bridges mediate weak intracluster antiferromagnetic coupling between Mn and W ions and between Mn ions, respectively. Further magnetic measurements and analysis show the spin glasses and intercluster ferromagnetic interaction exist in complex 1.  相似文献   

4.
The use has been explored of both azide (N3-) and alkoxide-containing groups such as the anions of 2-(hydroxymethyl)pyridine (hmpH), 2,6-pyridinedimethanol (pdmH2), 1,1,1-tris(hydroxymethyl)ethane (thmeH3) and triethanolamine (teaH3) in Mn cluster chemistry. The 1:1:1:1 reactions of hmpH, NaN3 and NEt3 with Mn(ClO4)(2).6H 2O or Mn(NO3)2.H2O in MeCN/MeOH afford [MnII4MnIII6O4(N3)4(hmp)12](X)2 [X=ClO4- (1), N3- (2)]. The [Mn10(mu4-O) 4(mu3-N3)4]14+ core of the cation has a tetra-face-capped octahedral topology, with a central MnIII6 octahedron, whose eight faces are bridged by four mu 3-N3- and four mu 4-O2- ions, the latter also bridging to four extrinsic MnII atoms. The core has Td symmetry, but the complete [MnII4MnIII6O4(N3)4(hmp)12]2+ cation has rare T symmetry, which is crystallographically imposed. A similar reaction of Mn(ClO4) (2).6H2O with one equiv each of NaN3, thmeH3, pdmH2, and NEt3 in MeCN/MeOH led to [MnII4MnIII6O2(N3)6(pdmH)4(thme)4] (3). Complex 3 is at the same oxidation level as 1/2 but its core is structurally different, consisting of two edge-fused [MnII2MnIII4(mu4-O)]14+ octahedra. Replacement of thmeH3 with teaH3 in this reaction gave instead [MnII2MnIII2(N3)4(pdmH)2(teaH)2] (4), containing a planar Mn 4 rhombus. Variable-temperature, solid-state dc and ac magnetization studies were carried out on 1-4 in the 5.0-300 K range. Complexes 1 and 2 are completely ferromagnetically coupled with a resulting S=22 ground state, one of the highest yet reported. Fits of dc magnetization vs field (H) and temperature (T) data by matrix diagonalization gave S=22, g=2.00, and D approximately 0.0 cm(-1) (D is the axial zero-field splitting parameter). In contrast, the data for 3 revealed dominant antiferromagnetic interactions and a resulting S=0 ground state. Complex 4 contains weakly ferromagnetically coupled Mn atoms, leading to an S=9 ground-state and low-lying excited states, and exhibits out-of-phase ac susceptibility signals characteristic of a single-molecule magnet. Theoretical values of the exchange constants in 1 obtained with density functional theory and ZILSH calculations were in good agreement with experimental values. The combined work demonstrates the synthetic usefulness of alcohol-based chelates and azido ligands when used together, and the synthesis in the present work of two "isomeric" MnIII6MnII4 cores that differ in spin by a remarkable 22 units.  相似文献   

5.
Ni ZH  Kou HZ  Zheng L  Zhao YH  Zhang LF  Wang RJ  Cui AL  Sato O 《Inorganic chemistry》2005,44(13):4728-4736
Two new cyano-bridged heterobinuclear complexes, [Mn(II)(phen)2Cl][Fe(III)(bpb)(CN)2] x 0.5CH3CH2OH x 1.5H2O (1) and [Mn(II)(phen)2Cl][Cr(III)(bpb)(CN)2] x 2H2O (2) [phen = 1,10-phenanthroline; bpb(2-) = 1,2-bis(pyridine-2-carboxamido)benzenate], and four novel azido-bridged Mn(II) dimeric complexes, [Mn2(phen)4(mu(1,1)-N3)2][M(III)(bpb)(CN)2]2 x H2O [M = Fe (3), Cr (4), Co (5)] and [Mn2(phen)4(mu(1,3)-N3)(N3)2]BPh4 x 0.5H2O (6), have been synthesized and characterized by single-crystal X-ray diffraction analysis and magnetic studies. Complexes 1 and 2 comprise [Mn(phen)2Cl]+ and [M(bpb)(CN)2]- units connected by one cyano ligand of [M(bpb)(CN)2]-. Complexes 3-5 are doubly end-on (EO) azido-bridged Mn(II) binuclear complexes with two [M(bpb)(CN)2]- molecules acting as charge-compensating anions. However, the Mn(II) ions in complex 6 are linked by a single end-to-end (EE) azido bridging ligand with one large free BPh4(-) group as the charge-balancing anion. The magnetic coupling between Mn(II) and Fe(III) or Cr(III) in complexes 1 and 2 was found to be antiferromagnetic with J(MnFe) = -2.68(3) cm(-1) and J(MnCr) = -4.55(1) cm(-1) on the basis of the Hamiltonian H = -JS(Mn)S(M) (M = Fe or Cr). The magnetic interactions between two Mn(II) ions in 3-5 are ferromagnetic in nature with the magnetic coupling constants of 1.15(3), 1.05(2), and 1.27(2) cm(-1) (H = -JS(Mn1)S(Mn2)), respectively. The single EE azido-bridged dimeric complex 6 manifests antiferromagnetic interaction with J = -2.29(4) cm(-1) (H = -JS(Mn1)S(Mn2)). Magneto-structural correlationship on the EO azido-bridged Mn(II) dimers has been investigated.  相似文献   

6.
The reaction between Mn(ClO 4) 2 and di-(2-pyridyl)-ketone in the presence of the sodium salt of propanediol as a base in MeOH leads to the formation of a hexanuclear manganese cluster. This cluster has been characterized by the formula [Mn(II) 3Mn(III) 3O(OH)(CH 3pdol) 3(Hpdol) 3(pdol)](ClO 4) 4 ( 1). Molecular conductance measurements of a 10 (-3) M solution of compound 1 in CH 3CN, DMSO, or DMF give Lambda m = 529, 135, or 245 muS/cm, respectively, which suggests a 1:4 cation/anion electrolyte. The crystal structure of hexanuclear manganese cluster 1 consists of two distinct trinuclear units with a pseudocubane-like arrangement. The trinuclear units show two different valence distributions, Mn(II)/Mn(III)/Mn(II) and Mn(III)/Mn(II)/Mn(III). Additional features of interest for the compound include the fact that (a) two of the Mn(III) ions show a Jahn-Teller elongation, whereas the third ion shows a Jahn-Teller compression; (b) one bridge between Mn(III) atoms is an oxo (O (2-)) ion, whereas the bridge between Mn(II) and Mn(III) is a hydroxyl (OH (-)) group; and (c) the di-(2-pyridyl)-ketone ligand that is methanolyzed to methyl-Hpdol and R 2pdol (R = CH 3, H) acts in three different modes: methyl-pdol(-1), Hpdol(-1), and pdol(-2). For magnetic behavior, the general Hamiltonian formalism considers that (a) all of the interactions inside the two "cubanes" between Mn(II) and Mn(III) ions are equal to the J 1 constant, those between Mn(II) ions are equal to the J 2 constant, and those between the Mn(III) ions are equal to the J 3 constant and (b) the interaction between the two cubanes is equal to the J 4 constant. The fitting results are J 1 = J 2 = 0.7 cm (-1), J 3 approximately 0.0, J 4 = -6.2 cm (-1), and g = 2.0 (fixed). According to these results, the ground state is S = 1/2, and the next excited states are S = 3/2 and 5/2 at 0.7 and 1.8 cm (-1), respectively. The EPR spectra prove that the spin ground state at a low temperature is not purely S = 1/2 but is populated with the S = 3/2 state, which is in accordance with the susceptibility and magnetization measurements.  相似文献   

7.
采用溶剂扩散法获得了锰(III)的两个单核配合物 [Mn(Miao)2(H2O)2]ClO4(1)和[Mn(Miao)2(DMF)2]ClO4(2)(HMiao = 1-甲基-2-咪唑醛肟,DMF = N,N-二甲基甲酰胺)的晶体。X-射线衍射单晶结构表明:两种配合物均属三斜晶系,空间群Pī,锰与配位原子形成稳定的八面体结构。采用Gaussian03W程序计算了HMiao配体的电荷密度,理论计算与实际配位形式完全吻合。通过循环伏安法测定了两种锰配合物在DMF 溶液中的电化学性质。  相似文献   

8.
The use of di-2-pyridyl ketone oxime, (py)2CNOH, in manganese carboxylate chemistry has been investigated. Using a variety of synthetic routes complexes [Mn(O2CPh)2{(py)2CNOH}2].0.25H2O (1.0.25H2O), Mn4(O2CPh)2{(py)2CO2}2{(py)2CNO}2Br2].MeCN (2.MeCN), [Mn4(O2CPh)2{(py)2CO2}2{(py)2CNO}2Cl(2)].2MeCN (3.2MeCN), [Mn4(O2CMe)2{(py)2CO2}2{(py)2CNO}2Br2].2MeCN (4.2MeCN), [Mn4(O2CMe)2{(py)2CO2}2{(py)2CNO}2(NO3)2].MeCN.H2O (5.MeCN.H2O) and [Mn2(O2CCF3)2(hfac)2{(py)2CNOH}2] (6) have been isolated in good yields. Remarkable features of the reactions are the in situ transformation of an amount of (py)2CNOH to yield the coordination dianion, (py)2CO2(2-), of the gem-diol derivative of di-2-pyridyl ketone in 2-5, the coordination of nitrate ligands in 5 although the starting materials are nitrate-free and the incorporation of CF3CO2- ligands 6 in which was prepared from Mn(hfac)(2).3H2O (hfac(-)= hexafluoroacetylacetonate). Complexes 2-4 have completely analogous molecular structures. The centrosymmetric tetranuclear molecule contains two MnII and two MnIII six-coordinate ions held together by four mu-oxygen atoms from the two 3.2211 (py)2CO2(2-) ligands to give the unprecedented [MnII(mu-OR)MnIII(mu-OR)2MnIII(mu-OR)MnII]6+ core consisting of a planar zig-zag array of the four metal ions. Peripheral ligation is provided by two 2.111 (py)2CNO-, two 2.11 PhCO2- and two terminal Br- ligands. The overall molecular structure 5 of is very similar to that of 2-4 except for the X- being chelating NO3-. A tentative reaction scheme was proposed that explains the observed oxime transformation and nitrate generation. The CF3CO2- ligand is one of the decomposition products of the hfac- ligand. The two Mn(II) ions are bridged by two neutral (py)2CNOH ligands which adopt the 2.0111 coordination mode. A chelating hfac- ligand and a terminal CF3CO2- ion complete a distorted octahedral geometry at each metal ion. The CV of complex reveals irreversible reduction and oxidation processes. Variable-temperature magnetic susceptibility studies in the 2-300 K range for the representative tetranuclear clusters 2 and 4 reveal weak antiferromagnetic exchange interactions, leading to non-magnetic ST = 0 ground states. Best-fit parameters obtained by means of the program CLUMAG and applying the appropriate Hamiltonian are J(Mn(II)Mn((III))=-1.7 (2), -1.5 (4) cm(-1) and J(Mn(III)Mn(III))=-3.0 (2, 4) cm(-1).  相似文献   

9.
A hexanuclear cyano-bridged {MnII4NbIV2} cluster (1) bearing 2,2'-bipyridine (bpy) as the blocking ligand at manganese is obtained from the reaction of cis-[MnCl2(bpy)2] and K4[Nb(CN)8]. When the blocking ligand is 1,10-phenanthroline (phen), a nonanuclear cluster {MnII6NbIV3} (2) is obtained. The structure of [{Mn(bpy)2}4{Nb(CN)8}2] has been solved by single-crystal X-ray crystallography, whereas the phen derivative has been confirmed by means of the structure analysis of the corresponding WIV analogue [{Mn(phen)2}6{W(CN)8}3(H2O)2]. Magnetic measurements revealed S=9 and 27/2 spin ground states for these aggregates as a result of antiferromagnetic Nb-Mn interaction with JNb-Mn=-18.1 cm(-1) (1) and -13.6 cm(-1) (2).  相似文献   

10.
Two new heptanuclear Mn clusters, [Mn7O5(OMe)2(O2CPh)9(terpy)] (1) and [Mn7O5(OCH2Ph)2(O2CPh)9(terpy)] (2), were prepared from the partial alcoholysis of the trinuclear complex [Mn3O(O2CPh)6(py)2(H2O)] (3) in the presence of terpy (terpy = 2,2':6',2' '-terpyridine). Complexes 1 and 2 crystallize in the triclinic P and the orthorhombic Pbca space groups, respectively. The clusters are both mixed valent, containing three Mn oxidation states: MnIV, 5MnIII, and MnII. The Mn ions are held together by nine doubly bridging benzoates, four mu3-O2- ions, one mu5-O2- ion, and either two mu-MeO- (1) or two mu-PhCH2O- (2) groups. The single terpy chelate in each complex is attached to the MnII ion. The core topology is novel and very unusual, comprising a cubane and a butterfly unit fused by sharing a MnIII and the mu5-O2- ion. Solid-state dc and ac magnetic susceptibility studies establish that complexes 1 and 2 both possess an S = 6 ground-state spin. Fits of variable-temperature and -field magnetization data gave S = 6, g = 1.88, and D = -0.21 cm-1 for 1 and S = 6, g = 1.86, and D = -0.18 cm-1 for 2. Single-crystal magnetization vs dc field scans down to 0.1 K for 2 show only very little hysteresis at 0.1 K.  相似文献   

11.
The initial employment of 2-(hydroxymethyl)pyridine for the synthesis of Mn/Ln (Ln = lanthanide) and Mn/Y clusters, in the absence of an ancillary organic ligand, has afforded a family of tetranuclear [Mn(III)(2)M(III)(2)(OH)(2)(NO(3))(4)(hmp)(4)(H(2)O)(4)](NO(3))(2) (M = Dy, 1; Tb, 2; Gd, 3; Y; 4) anionic compounds. 1-4 possess a planar butterfly (or rhombus) core and are rare examples of carboxylate-free Mn/Ln and Mn/Y clusters. Variable-temperature dc and ac studies established that 1 and 2, which contain highly anisotropic Ln(III) atoms, exhibit slow relaxation of their magnetization vector. Fitting of the obtained magnetization (M) versus field (H) and temperature (T) data for 3 by matrix diagonalization and including only axial anisotropy (zero-field splitting, ZFS) showed the ground state to be S = 3. Complex 4 has an S = 0 ground state. Fitting of the magnetic susceptibility data collected in the 5-300 K range for 3 and 4 to the appropriate van Vleck equations revealed, as expected, extremely weak antiferromagnetic interactions between the paramagnetic ions; for 3, J(1) = -0.16(2) cm(-1) and J(2) = -0.12(1) cm(-1) for the Mn(III)···Mn(III) and Mn(III)···Gd(III) interactions, respectively. The S = 3 ground state of 3 has been rationalized on the basis of the spin frustration pattern in the molecule. For 4, J = -0.75(3) cm(-1) for the Mn(III)···Mn(III) interaction. Spin frustration effects in 3 have been quantitatively analyzed for all possible combinations of sign of J(1) and J(2).  相似文献   

12.
Two novel CuII3MnIII2 pentanuclear oxalato complexes have been synthesized and characterized, namely [Cu(L)]3[Mn(ox)3]2 [L = 1,10-phenanthroline(phen) and 2,2-bipyridyl(bipy)] where ox is the oxalate dianion. Based on i.r., elemental analyses and electronic spectra, thesecomplexesareassignedtoextendedoxalato-bridged structures consisting of two manganese(III) ions and three copper(II) ions, in which each manganese(III) has a distorted octahedral environment and each copper(II) ion a distorted square pyramidal environment. The temperature dependance of the magnetic susceptibility for [Cu(phen)]3[Mn(ox)3]2·4H2O was measured over the 4.2–300K range and the observed data indicates antiferromagnetic spin exchange interaction between the CuII and MnIII ions.  相似文献   

13.
A series of isostructural cyano-bridged Mn(III)(h.s.)-M(III)(l.s.) alternating chains, [Mn(III)(5-TMAMsalen)M(III)(CN)(6)]?4H(2)O (5-TMAMsalen(2-)=N,N'-ethylenebis(5-trimethylammoniomethylsalicylideneiminate), Mn(III)(h.s.)=high-spin Mn(III), M(III)(l.s.)=low-spin Co(III), Mn-Co; Fe(III), Mn-Fe; Mn(III), Mn-Mn; Cr(III), Mn-Cr) was synthesized by assembling [Mn(III)(5-TMAMsalen)](3+) and [M(III)(CN)(6)](3-). The chains present in the four compounds, which crystallize in the monoclinic space group C2/c, are composed of an [-Mn(III)-NC-M(III)-CN-] repeating motif, for which the -NC-M(III)-CN- motif is provided by the [M(III)(CN)(6)](3-) moiety adopting a trans bridging mode between [Mn(III)(5-TMAMsalen)](3+) cations. The Mn(III) and M(III) ions occupy special crystallographic positions: a C(2) axis and an inversion center, respectively, forming a highly symmetrical chain with only one kind of cyano bridge. The Jahn-Teller axis of the Mn(III)(h.s.) ion is perpendicular to the N(2)O(2) plane formed by the 5-TMAMsalen tetradentate ligand. These Jahn-Teller axes are all perfectly aligned along the unique chain direction without a bending angle, although the chains are corrugated with an Mn-N(axis) -C angle of about 144°. In the crystal structures, the chains are well separated with the nearest inter-chain M???M distance being relatively large at 9?? due to steric hindrance of the bulky trimethylammoniomethyl groups of the 5-TMAMsalen ligand. The magnetic properties of these compounds have been thoroughly studied. Mn-Fe and Mn-Mn display intra-chain ferromagnetic interactions, whereas Mn-Cr is characterized by an antiferromagnetic exchange that induces a ferrimagnetic spin arrangement along the chain. Detailed analyses of both static and dynamic magnetic properties have demonstrated without ambiguity the single-chain magnet (SCM) behavior of these three systems, whereas Mn-Co is merely paramagnetic with S(Mn)=2 and D/k(B)=-5.3?K (D being a zero-field splitting parameter). At low temperatures, the Mn-M compounds with M=Fe, Mn, and Cr display remarkably large M versus H hysteresis loops for applied magnetic fields along the easy magnetic direction that corresponds to the chain direction. The temperature dependence of the associated relaxation time for this series of compounds systematically exhibits a crossover between two Arrhenius laws corresponding to infinite-chain and finite-chain regimes for the SCM behavior. These isostructural hetero-spin SCMs offer a unique series of alternating [-Mn-NC-M-CN-] chains, enabling physicists to test theoretical SCM models between the Ising and Heisenberg limits.  相似文献   

14.
The kinetic inertness of the hexaaquachromium(III) (kH2O=2.4x10(-6) s(-1)) has led to challenges with respect to incorporating CrIII ions into Prussian blue-type materials; however, hexakis(acetonitrile)chromium(III) was shown to be substantially more labile (approximately 10(4) times) and enables a new synthetic route for the synthesis of these materials via nonaqueous solvents. The synthesis, spectroscopic, and physical properties of Cr[M(CN)6] (M=V, Cr, Mn, Fe) Prussian blue analogues synthesized from [CrIII(NCMe)6]3+ and the corresponding [MIII(CN)6]3- are described. All these compounds {(NEt4)0.02CrIII[VIII(CN)6]0.98(BF4)(0.08).0.10MeCN (1), CrIII[CrIII(CN)6].0.16MeCN (2), CrIII[MnIII(CN)6].0.10MeCN (3), and (NEt4)0.04CrIII0.64CrIV0.40[FeII(CN)6]0.40[FeIII(CN)6]0.60(BF4)(0.16).1.02MeCN (4)} are ferrimagnets exhibiting cluster-glass behavior. Strong antiferromagnetic coupling was observed for M=V, Cr, and Mn with Weiss constants (theta) ranging from -132 to -524 K; and in 2, where the strongest coupling is observed (theta=-524 K), the highest Tc (110 K) value was observed. Weak antiferromagnetic coupling was observed for M=Fe (theta=-12 K) leading to the lowest Tc (3 K) value in this series. Weak coupling and the low Tc value observed in 4 were additionally contributed by the presence of both [FeII(CN)6]4- and [FeIII(CN)6]3- as confirmed by 57Fe-M?ssbauer spectroscopy.  相似文献   

15.
Two helical one-dimensional complexes [MnII(MeOH)4][MnIV(L·)2]·2MeOH (1) and [MnIII(salen)][MnIII(L)2] (2) (H2L = HON=C(Ph)N=NC6H4CO2H) contain the noninnocent ligand [Mn(L·)2]2- and innocent low-spin [Mn(L)2]-. Intrachain anti-ferromagnetic interaction between adjacent manganese ions via the syn-anti carboxylate bridges in complex 1. Alternate syn-anti and anti-anti carboxylate bridges have been found to transmit ferro- and antiferromagnetic coupling between high-spin and low-spin Mn(III) ions in complex 2.  相似文献   

16.
Reactions between the complex [MnII(L)]2+, where L is a N3O2 macrocyclic ligand, and different cyanometalate precursors such as [M(CN)n]m- (M(III) = Cr, Fe; M(II) = Fe, Ni, Pd, Pt) lead to cyano-bridged molecular assemblies exhibiting a variety of structural topologies. The reaction between [MnII(L)]2+ and [FeII(CN)6]4- forms a trinuclear complex with formula [(MnII(L)(H2O))2(FeII(micro-CN)2(CN)4)] x 2MeOH x 10H2O (1) which crystallizes in the triclinic space group P1. The reaction between [MnII(L)]2+ and [M(II)(CN)4]2-, where M(II) = Ni (2), Pd (3), Pt (4), gives rise to three isostructural linear chain compounds with stoichiometry [(MnII(L))(M(II)(micro-CN)2(CN)2)]n and which crystallize in the monoclinic space group C2/c. The self-assembly between [MnII(L)]2+ with [M(III)(CN)6]3-, where M(III) = Cr (5), Fe (6, 7, 8), forms three types of compounds. Compounds 5 and 6 are isostructural (monoclinic, space group P2(1)/n), and the structures comprise anionic linear chains [(MnII(L))(M(III)(micro-CN)2(CN)4)]n(n-) with cationic trinuclear complexes [(MnII(L)(H2O))2(M(III)(micro-CN)2(CN)4)]+ as counterions. Using an excess of K3[FeIII(CN)6], an analogous compound to 6 but with K+ as counterion is obtained (7), which crystallizes in the triclinic space group P1. Compound 8 consists of 2-D layers with formula [(MnII(L))3(FeIII(micro-CN)4(CN)2)(FeIII(micro-CN)2(CN)4)]n x 2nMeOH; it crystallizes in the monoclinic space group P2(1)/n. The magnetic properties were investigated for all samples. In particular, compound 5, which shows antiferromagnetic exchange interactions between Mn(II) and Cr(III) ions through cyanide bridging ligands, has been studied in detail; the magnetic exchange parameter amounts to J = -7.5(7) cm(-1). Compound 8 shows a magnetically ordered phase below 6.4 K which is confirmed by M?ssbauer spectroscopy; two hyperfine split spectra were observed below Tc from which IJI values of 2.1 and 1.6 cm(-1) could be deduced.  相似文献   

17.
Magnetically ordered Prussian blue analogues with the general formulation of M[Mn(CN)6] (M = V, Cr, Mn, Co, Ni) were made in aprotic media utilizing [MnIV(CN)6]2-. These analogs are valence-ambiguous, as they can be formulated as MII[MnIV(CN)6] or MIII[MnIII(CN)6]. The X-ray powder diffraction of each member of this family can be indexed to the face-centered cubic (fcc) Prussian blue structure type, with atypically reduced unit cell parameters (a approximately 9.25 +/- 0.25 A) with respect to hydrated Prussian blue structured materials (a > or = 10.1 A). The reduced a-values are attributed to a contraction of the lattice in the absence of water or coordinating solvent molecule (i.e., MeCN) that is necessary to help stabilize the structure during lattice formation. Based on vCN IR absorptions, X-ray photoelectron spectra, and magnetic data, the following oxidation state assignments are made: MII[MnIV(CN)6] (M = Co, Ni) and MIII[MnIII(CN)6] (M = V, Cr, Mn). Formation of MnIII[MnIII(CN)6] is in contrast to MnII[MnIV(CN)6] prepared from aqueous media. Above 250 K, the magnetic susceptibilities of M[Mn(CN)6] (M = V, Cr, Mn, Co, Ni) can be fit to the Curie-Weiss equation with theta = -370, -140, -105, -55, and -120 K, respectively, suggesting strong antiferromagnetic coupling. The room temperature effective moments, respectively, are 3.71, 4.62, 5.66, 4.54, and 4.91 microB, consistent with the above oxidation state assignments. All compounds do not exhibit magnetic saturation at 50 kOe, and exhibit frequency-dependent chi'(T) and chi"(T) responses characteristic of spin-glass-like behavior. M[Mn(CN)6] order as ferrimagnets, with Tc's taken from the peak in the 10 Hz chi'(T) data, of 19, 16, 27.1, < 1.75, and 4.8 K for M = V, Cr, Mn, Co, and Ni, respectively. The structural and magnetic disorder prevents NiII[MnIV(CN)6] from ordering as a ferromagnet as anticipated, and structural inhomogeneities allow CoII[MnIV(CN)6] and VIII[MnIII(CN)6] to unexpectedly order as ferrimagnets. Also, MnIII[MnIII(CN)6] behaves as a reentrant spin glass showing two transitions at 20 and 27.1 K, and similar behavior is evident for CrIII[MnIII(CN)6]. Hysteresis with coercive fields of 340, 130, 8, 9, and 220 Oe and remanent magnetizations of 40, 80, 1500, 4, and 250 emuOe/mol are observed for M = V, Cr, Mn, Co, and Ni, respectively.  相似文献   

18.
Two cyano-bridged tetranuclear complexes composed of Mn(III) salen (salen = N,N'-ethylene bis(salicylideneiminate)) and hexacyanometalate(III) (M = Fe, Cr) in a stoichiometry of 3:1 have been selectively synthesized using {NH2(n-C12H25)2}3[M(III)(CN)6] (M(III) = Fe, Cr) starting materials: [{Mn(salen)(EtOH)}3{M(CN)6}] (M = Fe, 1; Cr, 2). Compounds 1 and 2 are isostructural with a T-shaped structure, in which [M(CN)6]3- assumes a meridional-tridentate building block to bind three [Mn(salen)(EtOH)]+ units. The strong frequency dependence and observation of hysteresis on the field dependence of the magnetization indicate that 1 is a single-molecule magnet.  相似文献   

19.
A family of Mn3+ and Fe3+ complexes of 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (1) and 4,10-dimethyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane (2) has been prepared by the chemical oxidation of the divalent manganese and iron analogues. The ligands are ethylene cross-bridged tetraazamacrocycles derived from cylam and cyclen, respectively. The synthesis and characterization of these complexes, including X-ray crystal structure determinations, are described. The structural evidence demonstrates that the tetradentate ligands enforce distorted octahedral geometries on the metal ions, with two cis sites occupied by labile ligands. Magnetic measurements reveal that the complexes are high spin with typical magnetic moments. Cyclic voltammetry shows reversible redox processes for the Fe3+/Fe2+ couples of the iron(III) complexes, while Mn3+/Mn2+ and Mn4+/Mn3+ couples were observed for the complexes with manganese(III). The manganese chemistry of 1 was studied in depth. The dichloro manganese(III) cation of 1 undergoes facile ligand substitution reactions at the labile, monodentate sites, for example substituting azide for chloride ligands. Air oxidation of the dichloro complex of Mn (1)2+ in basic solution does not give the expected mu-oxo dimeric product common to manganese. Instead, an unusual manganese(III)-OH complex has been isolated from this reaction and structurally characterized. A similar reaction under slightly different conditions gives a putative MnIII(OH)2 complex that metathesizes to MnIII(OMe)2 upon recrystallization from methanol.  相似文献   

20.
Yeung WF  Lau PH  Lau TC  Wei HY  Sun HL  Gao S  Chen ZD  Wong WT 《Inorganic chemistry》2005,44(19):6579-6590
The synthesis, structures, and magnetic properties of four cyano-bridged M(II)Ru(III)2 compounds prepared from the paramagnetic Ru(III) building blocks, trans-[Ru(salen)(CN)2]- 1 [H2salen = N,N'-ethylenebis(salicylideneimine)] and trans-[Ru(acac)2(CN)2]- (Hacac = acetylacetone), are described. Compound 2, {Mn(CH3OH)4[Ru(salen)(CN)2]2}.6CH3OH.2H2O, is a trinuclear complex that exhibits antiferromagnetic coupling between Mn(II) and Ru(III) centers. Compound 3, {Mn(H2O)2[Ru(salen)(CN)2]2.H2O}n, has a 2-D sheetlike structure that exhibits antiferromagnetic coupling between Mn and Ru, leading to ferrimagnetic-like behavior. Compound 4, {Ni(cyclam)[Ru(acac)2(CN)2]2}.2CH3OH.2H2O (cyclam = 1,4,8,11-tetraazacyclotetradecane), is a trinuclear complex that exhibits ferromagnetic coupling. Compound 5, {Co[Ru(acac)2(CN)2]2}n, has a 3-D diamond-like interpenetrating network that exhibits ferromagnetic ordering below 4.6 K. The density functional theory (DFT) method was used to calculate the molecular magnetic orbitals and the magnetic exchange interaction between Ru(III) and M(II) (Mn(II), Ni(II)) ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号