共查询到20条相似文献,搜索用时 15 毫秒
1.
功率型发光二极管的研究与应用进展 总被引:3,自引:0,他引:3
文章首先对功率型发光二极管的起源和发展作了回顾和简要的叙述.然后以固体光源照明为目标,给出了几种可见光功率发光二极管芯片和封装的典型结构,并且对它们各自的特点进行了比较.最后指出了功率发光二极管作为固体光源取代真空灯泡用于照明在未来的五至十年内将成为现实. 相似文献
2.
Bjrn Kemper Stephan Stürwald Christian Remmersmann Patrik Langehanenberg Gert von Bally 《Optics and Lasers in Engineering》2008,46(7):499-507
Partial coherent light sources open up prospects for phase noise reduction in digital holographically reconstructed phase distributions by suppressing multiple reflections in the experimental setup. Thus, light emitting diodes (LEDs) are investigated for application in digital holographic microscopy. First, the spectral properties and the resulting coherence length of an LED are characterised. In addition, an analysis of dispersion effects and their influence on the hologram formation is carried out. The coherence length of LEDs in the range of a few micrometers restricts the maximum interference fringe number in off-axis holography for spatial phase shifting. Thus, the application of temporal phase-shifting-based digital holographic reconstruction techniques is compared to spatial phase-shifting-based methods. It is demonstrated that LEDs are applicable for digital holographic microscopy in connection with both spatial and temporal phase-shifting-based techniques for reduction of noise in comparison to a laser-light-based experimental setup. 相似文献
3.
4.
The Eu2+-doped Ba3Si6O12N2 green phosphor (EuxBa3−xSi6O12N2) was synthesized by a conventional solid state reaction method. It could be efficiently excited by UV-blue light (250-470 nm) and shows a single intense broadband emission (480-580 nm). The phosphor has a concentration quenching effect at x=0.20 and a systematic red-shift in emission wavelength with increasing Eu2+ concentration. High quantum efficiency and suitable excitation range make it match well with the emission of near-UV LEDs or blue LEDs. First-principles calculations indicate that Ba3Si6O12N2:Eu2+ phosphor exhibits a direct band gap, and low band energy dispersion, leading to a high luminescence intensity. The origin of the experimental absorption peaks is clearly identified based on the analysis of the density of states (DOS) and absorption spectra. The photoluminescence properties are related to the transition between 4f levels of Eu and 5d levels of both Eu and Ba atoms. The 5d energy level of Ba plays an important role in the photoluminescence of Ba3Si6O12N2:Eu2+ phosphor. The high quantum efficiency and long-wavelength excitation are mainly attributed to the existence of Ba atoms. Our results give a new explanation of photoluminescence properties and could direct future designation of novel phosphors for white light LED. 相似文献
5.
运用电致发光(EL)和光致发光(PL)实验,分析了图形化蓝宝石衬底(PSSLEDs)和常规平面蓝宝石衬底(C-LEDs)InGaN/GaN多量子阱发光二极管的光谱特性。对比EL谱,发现PSSLEDs拥有更强的光功率和更窄的半峰宽(FWHM),说明PSSLEDs具有较高的晶体质量。其次,PSSLEDs的EL谱半峰宽随电流增加出现了更快的展宽,而这两种LED样品的PL谱半峰宽随激光功率增加呈现了基本相同的展宽变化,说明在相同电流下,PSSLEDs量子阱中载流子浓度更高,能带填充效应更强。另外,随着电流的增加,PSSLEDs和C-LEDs的峰值波长都发生蓝移,且前者的蓝移程度较小,结合半峰宽的对比分析,说明PSSLEDs量子阱中的极化电场较小。最后,对比了PSSLEDs和C-LEDs的外量子效率随电流的变化,发现PSSLEDs拥有更严重的efficiency droop,说明量子阱中极化电场不是导致efficiency droop的主要原因。 相似文献
6.
Saturation of extrinsic photoconductivity in GaP:N(Zn, Te) diodes could be achieved by excitation with a TEA-CO2-laser. At wavelengths in the 10 m range intensities of several 100 kW/cm2 being near the damage threshold were applied. Carrier lifetimes of 60 ps at 4.2 K and 200 ps at 77 K could be estimated. The only conceivable mechanism explaining these short time constants is the capture of infrared excited holes by ionized shallow acceptors in the highly compensated p-side of the diode. 相似文献
7.
Modified wide radiating lenses of the power-chip light emitting diodes for a direct-lit backlight 总被引:1,自引:0,他引:1
Modified wide radiating lenses of the power-chip light emitting diodes (LEDs) for a direct-lit backlight unit of a liquid crystal display (LCD) are numerically investigated. To improve the optical properties of the backlight, the lens of the Golden DRAGON® ARGUS® LED, the cluster of LEDs, and the cluster arrangement for the 32-in bottom-lit backlight unit of a LCD are modified and verified by optical tracing simulation software. First, the central section shape is modified and analyzed to reduce the angular luminous intensity in the small angle range. The results show that the modifying lens method can effectively realize the aim. Then, several LEDs with the modified lenses are put in 32-in backlight. It is shown that the uniformity and efficiency of the new backlight are obviously better than the ones of the original type. 相似文献
8.
X. Ni X. Li J. LeeS. Liu V. AvrutinA. Matulionis Ü. Özgür H. Morkoç 《Superlattices and Microstructures》2010
Significant progress in the power conversion efficiency and brightness of InGaN-based light emitting diodes (LEDs) has paved the way for these devices to be considered for LED lighting. In this realm, however, the efficiency must be retained at high injection levels in order to generate the lumens required. Unfortunately, LEDs undergo a monotonic efficiency degradation starting at current densities even lower than 50 A/cm2 which would hinder LED insertion into the general lighting market. The physical origins for the loss of efficiency retention are at present a topic of intense debate given its enormous implications. This paper reviews the current status of the field regarding the mechanisms that have been put forward as being responsible for the loss of efficiency, such as Auger recombination, electron overflow (spillover), current crowding, asymmetric injection of electrons and holes, and poor transport of holes through the active region, the last one being applicable to multiple quantum well designs. While the Auger recombination received early attention, increasing number of researchers seem to think otherwise at the moment in that it alone (if any) cannot explain the progressively worsening loss of efficiency reduction as the InN mole fraction is increased. Increasing number of reports seems to suggest that the electron overflow is one of the major causes of efficiency degradation. The physical driving force for this is likely to be the relatively poor hole concentration and transport, and skewed injection favoring electrons owing to their relatively high concentration. Most intriguingly there is recent experimental convincing evidence to suggest that quasi-ballistic electrons in the active region, which are not able to thermalize within the residence time and possibly longitudinal optical phonon lifetime, contribute to the carrier overflow which would require an entirely new thought process in the realm of LEDs. 相似文献
9.
Surface preparation procedures for indium gallium nitride (InGaN) thin films were analyzed for their effectiveness for carbon and oxide removal as well as for the resulting surface roughness. Aqua regia (3:1 mixture of concentrated hydrochloric acid and concentrated nitric acid, AR), hydrofluoric acid (HF), hydrochloric acid (HCl), piranha solution (1:1 mixture of sulfuric acid and 30% H2O2) and 1:9 ammonium sulfide:tert-butanol were all used along with high temperature anneals to remove surface contamination. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were utilized to study the extent of surface contamination and surface roughness, respectively. The ammonium sulfide treatment provided the best overall removal of oxygen and carbon. Annealing over 700 °C after a treatment showed an even further improvement in surface contamination removal. The piranha treatment resulted in the lowest residual carbon, while the ammonium sulfide treatment leads to the lowest residual oxygen. AFM data showed that all the treatments decreased the surface roughness (with respect to as-grown specimens) with HCl, HF, (NH4)2S and RCA procedures giving the best RMS values (∼0.5-0.8 nm). 相似文献
10.
Ou Gu-ping 《Applied Surface Science》2006,252(10):3417-3427
We have investigated the morphology and surface electron states of LiBq4 deposited on ITO and CuPc/ITO, using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The AFM observations indicate that LiBq4 can form a much more uniform film on CuPc than that on ITO. Furthermore, X-ray photoelectron spectroscopy (XPS) is utilized to further demonstrate the AFM results. From the analysis of XPS, we found that LiBq4 molecules have poor thermal stability, they are seriously oxidized during depositing; but when a CuPc layer is inserted between LiBq4 and ITO film, the oxidation and surface contamination of LiBq4 are significantly reduced. It is then concluded that the introduction of a CuPc buffer layer under the LiBq4 film can improve the film quality of LiBq4.The XPS results also testified the fact that no coordination bonds between N atoms and B atoms are formed in LiBq4 molecules, which make LiBq4 to be potential blue organic light-emitting material. 相似文献
11.
Yun-Wei Cheng 《Optics Communications》2009,282(5):835-838
A low-junction-temperature light emitting diode (LED) by selectively ion-implantation in part of the p-type GaN layer is demonstrated. The junction temperature extracted from a forward voltage method of an ion-implanted LED is significantly lower than that of a conventional LED. Furthermore, the linearity of the luminescence-current curve of the device is improved without altering electrical properties. 相似文献
12.
Theoretical and experimental analysis of the effects of the series resistance on luminous efficacy in GaN-based light emitting diodes
下载免费PDF全文

In this paper, a new equivalent circuit model of GaN-based light emitting diodes (LEDs) is established. The impact of the series resistance to luminous efficacy is simulated using the MATLAB software. GaN-based LEDs with different n- contact electrode materials (LEDs with Ni/Au and LEDs with Cr/Au) are fabricated. By comparing and analyzing the results of performances, we concluded that both the series resistance and the carrier loss could affect the luminous efficacy severely. LEDs with lower series resistance have higher luminous efficacy and its efficiency droop is alleviated simultaneously. To improve luminous efficacy, the fabrication process should be optimized for lower series resistance. 相似文献
13.
The effect of ITO films thickness on the properties of flexible organic light emitting diode 总被引:1,自引:0,他引:1
Indium tin oxide (ITO) thin films were deposited on cyclic olefin copolymer substrate at room temperature by an inverse target sputtering system. The crystal structure and the surface morphology of the deposited ITO films were examined by X-ray diffraction and atomic force microscopy, separately. The electrical properties of the conductive films were explored by four-point probing. Visible spectrometer was used to measure the optical properties of ITO-coated films. The performance of the flexible organic light emitting diode device with different thickness anode was investigated in this study. 相似文献
14.
We provide a large F-P cavity model to analyze the effects of reflector-induced interferences on light extraction of InGaN/GaN vertical light emitting diodes (VLEDs). It shows that the distance (d) between the active region and the metal reflector has a significant influence on extraction efficiency due to interferences. The maximum in extraction efficiency corresponding to the optimal d is about three times the neighboring minimum. The reflector of different metals is considered in this model and the results show that the optimal d and the value of the maximum in the extraction efficiency are directly related to the type of metal, which can be attributed to varied reflection phase shift and reflectivity on different metals, respectively. 相似文献
15.
Mn/p-Si structures have been realised by electron beam evaporation of manganese on etched and cleaned p-Si wafers. Bilayer structures have been irradiated by swift heavy ions (of 100 MeV Fe7+ having a fluence of 1 × 1013 ions/cm2). The electronic transport features across the bilayer of the structure (i.e. I–V characteristics across the Mn/p-Si interface) show a significant increase of current (by two orders of magnitude) for the irradiated ones as compared to un-irradiated ones. I–V characteristics across the interface has also been recorded in presence of in-plane (i.e., along the plane of the interface) magnetic field which show a significant magnetic field sensitivity for the irradiated ones. The surface morphological studies from AFM show a granular structure with open face having micro-particles in it, prior to the irradiation and round shaped embedded granular structure after the irradiation. XRD data show the formation of manganese silicide (Mn5Si2). The results are understood in the realm of interfacial intermixing which is tailored by the swift heavy ion irradiation. 相似文献
16.
S. Ben Khalifa B. Gruzza G. Bremond F. Saidi L. Bèji 《Journal of luminescence》2008,128(10):1611-1616
Porous GaAs layers were formed by electrochemical etching of p-type GaAs(1 0 0) substrates in HF solution. A surface characterization has been performed on p-type GaAs samples using X-ray photoelectron spectroscopy (XPS) technique in order to get information about the chemical composition, particularly on the surface contamination. According to the XPS spectra, the oxide layer on as-received porous GaAs substrates contains As2O3, As2O5 and Ga2O3. Large amount of oxygen is present at the surface before the surface cleaning.Compared to untreated GaAs surface, room temperature photoluminescence (PL) investigations of the porous layers reveal the presence of two PL bands: a PL peak at ∼871 nm and a “visible” PL peak at ∼650-680 nm. Both peak wavelengths and intensities varied from sample to sample depending on the treatment that the samples have undergone. The short PL wavelength at 650-680 nm of the porous layers is attributed to quantum confinement effects in GaAs nano-crystallites. The surface morphology of porous GaAs has been studied using atomic force microscopy (AFM). Nano-sized crystallites were observed on the porous GaAs surface. An estimation of the mean size of the GaAs nano-crystals obtained from effective mass theory and based on PL data was close to the lowest value obtained from the AFM results. 相似文献
17.
M. Suchea S. Christoulakis M. Katharakis N. Kornilios E. Koudoumas 《Applied Surface Science》2008,254(17):5475-5480
The pulsed laser deposition technique was used to produce zinc oxide thin films onto silicon and Corning glass substrates. Homogeneous surfaces exhibiting quite small Root Mean Square (RMS) roughness, consisting of shaped grains were obtained, their grain diameters being 40-90 nm at room temperature and at 650 °C growth respectively. Films were polycrystalline, even for growth at room temperature, with preferential crystallite orientation the (0 0 2) basal plane of wurtzite ZnO. Temperature increase caused evolution from grain to grain agglomeration structures, improving crystallinity. Compressive to tensile stresses transition with temperature was found while the lattice constant decreased. 相似文献
18.
Surface analysis of inhibitor films formed by imidazolines and amides on mild steel in an acidic environment 总被引:2,自引:0,他引:2
O. Olivares-Xometl N.V. Likhanova J.M. Hallen E. Arce 《Applied Surface Science》2006,252(6):2139-2152
Imidazolines and amidic precursors were synthesized with good yields through an optimized process. These compounds were evaluated as corrosion inhibitors in an aqueous solution of 1.0 M HCl by gravimetric and polarization techniques. AISI 1018 carbon steel displayed a corrosion rate dependent on the molecular structure and concentration of inhibitor in the testing environment. Adsorption of inhibitors was found to follow the Langmuir's isotherm, this concept together with Gibbs’ free energy provided the basis to arrange corrosion inhibitors according to efficiency and stability. The surface analysis by AFM displayed that the damage on the metallic surface was considerably reduced in the presence of certain inhibitors. XPS determined the presence of a layer of inhibitor on the metal surface with protective properties. 相似文献
19.
S. Kishwar K. ul HasanN.H. Alvi P. KlasonO. Nur M. Willander 《Superlattices and Microstructures》2011
Vertically well aligned zinc oxide nanorods (ZnO NRs) were grown on p-GaN by electrodeposition (ED) and aqueous chemical growth (ACG) techniques and the structures were employed to fabricate white light emitting diodes (LEDs). Room temperature current voltage (I–V), photoluminescence (PL), and electroluminescence (EL) measurements were performed to investigate and compare both LEDs. In general, the I–V characteristics and the PL spectra of both LEDs were rather similar. Nevertheless, the EL of the ED samples showed an extra emission peak shoulder at 730 nm. Moreover, at the same injection current, the EL spectrum of the ED light emitting diode showed a small UV shift of 12 nm and its white peak was found to be broader when compared to the ACG grown LED. The broadening of the EL spectrum of the LED grown by ED is due to the introduction of more radiative deep level defects. The presented LEDs have shown excellent color rendering indexes reaching a value as high as 95. These results indicate that the ZnO nanorods grown by both techniques possess very interesting electrical and optical properties but the ED is found to be faster and more suitable for the fabrication of white LEDs. 相似文献
20.
Physical-morphological and chemical changes leading to an increase in adhesion between plasma treated polyester fibres and a rubber matrix 总被引:1,自引:0,他引:1
The effects of plasma treatment, used to increase adhesion strength between poly(ethylene terephtalate) (PET) fibres and a rubber matrix, were investigated and compared. Morphological changes as a result of atmospheric plasma treatment were observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Wettability analysis using a surface energy evaluation system (SEE system) suggested that the plasma treated fibre was more wetting towards a polar liquid. When treated, these fibres showed a new lamellar crystallization, as shown by a new melting peak using differential scanning calorimetry (DSC). X-ray photoelectron spectroscopy (XPS) has been used to study the chemical effect of inert (argon), active and reactive (nitrogen and oxygen) microwave-plasma treatments of a PET surface. Reactive oxygen plasma treatment by a de-convolution method shows new chemical species that drastically alter the chemical reactivity of the PET surface. These studies have also shown that the surface population of chemical species formed after microwave-plasma treatment is dependent on the plasma gas. All these changes cause better adhesion strength of the PET fibres to the rubber matrix. 相似文献