首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 419 毫秒
1.
Solid-state spin–lattice relaxation in the rotating frame permits the investigation of dynamic processes with correlation times in the range of microseconds. The relaxation process in organic solids is driven by the fluctuation of the local magnetic field due to the dipole–dipole interaction of the probe nuclei (13C,15N) with 1H in close proximity. However, its effect is often hidden by a competing relaxation process due to the contact between the rotating frame 13C/15N Zeeman and 1H dipolar reservoirs. In most cases the latter process becomes superior for the commonly applied low and moderate spin-lock fields and practically does not provide information about the molecular dynamics. To suppress this undesired process and to expand the dynamic range of T1 ρ experiments, we present two approaches. The first one uses a resonance offset of the frequency of the spin-lock irradiation, which leads to a significant enhancement of the effective spin-lock frequency without the application of destructive high transmitter powers. We derive the theory and demonstrate the applicability of the method on various model compounds. The second approach utilizes heteronuclear 1H decoupling during the 13C/15N spin-lock irradiation which disrupts the contact between the 13C/15N Zeeman and 1H dipolar reservoirs. We demonstrate the method and discuss the results qualitatively.  相似文献   

2.
The solid state 13C CPMAS NMR spectra of plant cell walls are often complex owing to superposition of resonances from different polysaccharides and the heterogeneity of the cell wall assembly. In this paper, we describe the application of a set of proton relaxation-induced spectral editing (PRISE) experiments which combine 1H relaxation properties (T1, T, T2) with 13C high resolution spectroscopy (CPMAS) to relate the dynamics of the plant cell walls and model systems to their domain structural details. With PRISE it has been found that in plant cell wall materials, cellulose is always associated with the long components of spin–lattice relaxation in both the laboratory and rotating frames whereas non-cellulose polysaccharides (pectin and hemicellulose) are associated with the short ones. For the proton T2 relaxation, cellulose is only associated with the short component (below 20 μs), pectin contributes to both the short component and the long one.  相似文献   

3.
取代基性质与饱和碳及饱和碳上质子化学位移的关系   总被引:2,自引:2,他引:0  
李临生 《波谱学杂志》1997,14(2):179-184
根据多元线性回归分析,得到一个表达去屏蔽参数△αH与基团电负性XG的关系式:XG=(2.6△αH-n)/5+2.6.13C NMR去屏蔽参数△αC与电负性之间的关系可表达为:XG=(△αC+5n)/40+2.由上述二式计算出的基团电负性与文献中提供的数据相仿,说明氢谱和碳谱化学位移主要与取代基电负性及其变形性有线性关系.不过由化学位移或去屏蔽参数计算出的基团电负住不能反映芳环等具有各向异性效应基团的诱导效应.  相似文献   

4.
Poly(vinyl alcohol) (PVA) with 55% and 61% syndiotacticity, and their related dry and hydrated gels obtained by two different freeze–thawing cycles have been investigated using the solid-state 13C CP-MAS NMR technique. From a comparative analysis of the spectra, evidence was obtained that the gelation process largely disrupts the intramolecular hydrogen-bonded network of the PVA. The addition of water to the dry gels favours their swelling, destroying intra-chain hydrogen bonds between hydroxyl groups as a function of the degree of tacticity and the gelation procedure, and promotes the formation of new networks of interchain hydrogen bonds. Information on the dynamics of the polymeric domains in the kilohertz range has been obtained from the analysis of the spin relaxation times T1ρ(1H) and T1ρ(13C), indicating that homogeneous arrangements of the amorphous or swollen polymeric chains exist, independent of the preparation method or the tacticity of the PVA chains.  相似文献   

5.
Wideline 1H FID and relaxation measurements of a relatively simple motionally heterogeneous system, the triblock copolymer styrene–butadiene–styrene, have been performed in a temperature range between the polystyrene and polybutadiene glass transition temperatures. The two FID and the two spin lattice relaxation time in the rotating frame (T1ρ) components found at each temperature have been correlated by means of a two-dimensional approach. It is shown that this approach allows dynamic information, not accessible simply by interpreting proton T1 and T1ρ data, to be revealed. In the case examined, the correlation found could be confirmed by high-resolution 1H T1ρ-selective 13C Cross Polarization experiments.  相似文献   

6.
The π0 spectrum in the KL0 → 3π decay was measured using a wire chambers magnetic spectrometer. In the usual approximation, the matrix element can be expressed as: M2 ≈ 1 + 2a0(MK/Mπ2)(2Tπ0Tπ0max) + a1(MK2/Mπ4)(2Tπ0Tπ0max)2. We obtained a0 = −0.282 ± 0.011 and a1 consistent with zero.  相似文献   

7.
The spin-lattice relaxation times T1 of 1H and 29Si spins in talc have been measured at room temperature with and without magic-angle spinning (MAS) of the sample. Paramagnetic impurities work as relaxation centers. 1H T1 depends on the spinning rate, whereas 29Si T1 is independent of the spinning rate. These facts demonstrate that spin diffusion plays an important role in 1H relaxation but not in 29Si relaxation. 29Si spins relax through dipole-dipole interactions with electron spins directly, which mechanism is not affected by spinning. The relaxation rates have been analyzed theoretically.  相似文献   

8.
Spin-lattice relaxation times T1 and T as well as 1H NMR spectra have been employed to study the dynamics of the glass-forming di-isobutyl phthalate in the temperature range extending from 100 K, through the glass transition temperature Tg, up to 340 K. Below Tg NMR relaxation is governed by local dynamics and may be attributed to rotation of methyl groups at low temperatures and to motion of isobutyl groups in the intermediate temperature interval. Above Tg the main relaxation mechanism is provided by overall molecular motion. The observed relaxation behavior is explained by motional models assuming asymmetrical distributions of correlation times. The motional parameters obtained from Davidson-Cole distribution, which yields the best fit of the data at all temperatures are given.  相似文献   

9.
13C及29Si核磁共振研究了苯乙烯(S)及二甲基硅氧烷(Si)嵌段共聚物中硅氧烷软段的固体及溶液谱的自旋-晶格弛豫时间T1。固态嵌段共聚物主链29Si及侧甲基13C的T1都与均聚物的T1相近,但在CdCl3溶液中各种嵌段共聚物的T1与均聚硅氧烷相差颇大。用偶极-偶极相互作用来解释高聚物的自旋-晶格弛豫。苯乙烯-二甲基硅氧烷嵌段共聚物具两相结构,所以嵌段共聚物中软段及硬段微区中链段的运动与在均聚物分子中链段的运动模式基本相同。而CdCl3对聚苯乙烯或聚硅氧烷都是良溶剂,软段硬段之间有相互影响。所以其链段运动与均聚物不同,从而导致链段运动的相关时间τc变短和T1的增长。  相似文献   

10.
Molecular dynamics of polycrystalline cellobiose studied by solid-state NMR   总被引:1,自引:0,他引:1  
Molecular motions of polycrystalline cellobiose have been investigated by measuring proton spin–lattice relaxation times, T1 and T, and the second moment, M2, in both protonated and D2O exchanged forms over the temperature range 120–380 K. T1 relaxation is dominated by the motions of hydroxyl groups between 150 and 380 K, characterised by an activation energy of about 8.74 kJ/mol, whereas T relaxation is driven by the motions of the same groups between 120 and 300 K. T results suggest that hydroxyl groups have a distribution of dynamics. Motion of methylene groups was detected in the second-moment experiments at about 350 K, characterised by activation energy of about 40 kJ/mol. Consideration of the calculated and observed rigid-lattice second moments suggests that the reported X-ray data are incorrect for the inter-proton distance on C6′. 13C CPMAS spectra of both protonated and deuterated cellobiose have also been measured. Spectra of the deuterated material showed the existence of a second crystalline form in addition to the normal form.  相似文献   

11.
Crystalline 2,3-dicyano-5,7-dimethyl-6H-1,4-diazepine (A) was investigated by solid-state NMR spectroscopy, X-ray diffraction, and spectral simulations. The solid-state 13C NMR spectra of A display peculiar splittings for the methyl and cyano resonances. The crystal structure of A indicates that the methyl doublet is a consequence of two crystallographically inequivalent environments. The methyl motions associated with each site was examined via spin-lattice relaxation time (T1) measurements, and the carbon relaxation times (T1C) were used to calculate energy barriers to methyl rotation. The energy barriers to rotation were then used to correlate each methyl 13C shift with a particular crystallographic environment. The complex cyano splittings, however, are a result of both crystallographic inequivalence and residual 13C–14N dipolar coupling. The multiplet patterns of the isotropic shifts (centerbands) are dependent upon the magic-angle spinning (MAS) rate. Spectral simulations, using the perturbation method, of the centerbands and first-order sidebands were used to demonstrate, and elucidate, the observed MAS rate-dependent multiplet patterns of the cyano signals.  相似文献   

12.
本文使用固体高分辨NMR测量了PPU/PMAs,AB-交联聚合物中PPU的侧甲基的13C自旋-晶格弛豫时间(T1)。使用内旋转运动的平均谱密度函数分析了PPU侧甲基的内旋转和PMA的侧基的多重内旋转运动。结果表明PMA中的侧基距主链越远,其旋转速度越快并且PPU侧甲基的内旋转速度随ABCP中PMA侧链长度增加而变快。还使用质子的T1ρ和T2及自旋扩散研究了体系的相容性和相行为。得到了有关相应尺度下的每相的组成和软相微区尺度的信息。  相似文献   

13.
Five type II kerogens, shown by elemental analysis and Rock-Eval pyrolysis to represent a gradient of thermal maturity, were further characterized using a range of solid-state 13C NMR spectroscopic techniques. 13C cross polarization (CP) NMR spectra of the kerogens confirmed the well-established pattern of increasing aromaticity with increasing thermal maturity. Spin counting showed that CP observability was around 50% for the immature kerogens, and only 14–25% for the mature kerogens. Spin counting also showed that the direct polarization (DP) observabilities were >80% for all but one of the kerogens. Despite the large differences in observability between the two techniques, aromaticities derived from corresponding CP and DP spectra differed by only 1–15%. The RESTORE technique showed that the low CP observability of the immature kerogens was due mostly to rapid T1ρH relaxation, whereas both rapid T1ρH relaxation and slow polarization transfer contributed to the low CP observability of the mature kerogens.  相似文献   

14.
The nuclear spin-lattice relaxation rate, 1/T1, has been measured in weak itinerant ferromagnets Y(Co1−xAlx)2. The temperature and magnetic field dependence of 1/T1T has been found to be well described by the self-consistent renormalization (SCR) theory of spin fluctuations. The parameters characterizing spin fluctuations in this system were estimated from NMR and magnetic measurements. The temperature dependence of susceptibility calculated from these parameters well reproduces the experimental results.  相似文献   

15.
The 63Cu NMR Knight shift K and spin-lattice relaxation rate 1/T1 have been measured to study the thiospinel superconductor Cu1.5Rh1.5S4 from a microscopic viewpoint. K is negative and has a weak dependence on temperature, and the hyperfine coupling constant Hhfd is estimated to be −52.4 kOe/μB. 1/T1 is proportional to the temperature in the normal state. In the superconducting state, 1/T1 takes a coherence peak just below Tc, and decreases exponentially well below Tc, from whose temperature dependence the superconducting energy gap has been proved to be close to 2Δ = 3.52kBTc given by the BCS theory.  相似文献   

16.
The use of nuclear magnetic resonance (NMR) relaxation time measurements for characterization of abnormal cardiac tissue depends upon knowledge of variations of relaxation times of normal myocardium and determinants of these variations. We calculated in vitro NMR T1 and T2 relaxation times of canine myocardium from the four cardiac chambers, and determined hydroxyproline concentration (as a measure of collagen) and percent water content of the samples. We found both water content and T1 relaxation time of the right ventricle to be significantly greater than the left atrium (p < 0.05). T2 relaxation time of the left ventricle was found to be shorter than each of the other three chambers (p < 0.05). There were significant correlations between the spin-lattice relaxation time and both percent water content (r = 0.58) and hydroxyproline concentration (r = 0.45). A significant correlation was also found between T2 relaxation time and hydroxyproline concentration (r = 0.49). When T1 and T2 were adjusted for water and hydroxyproline content, there was no longer any evidence for significant interchamber differences for either T1 or T2. These data suggest that differences in NMR relaxation times exist among the four chambers of the normal canine heart. Furthermore, a major determinant of myocardial spin-lattice relaxation time is tissue water content while both collagen content and percent water content significantly contribute to variability in cardiac chamber T2 relaxation times.  相似文献   

17.
A solid complex of C60 with γ-cyclodextrin (γ-CyD) was examined with NMR spectroscopic methods in order to understand the dynamics of C60, and the interaction between C60 and γ-CyD. A 13C solid-state cross-polarization magic angle spinning (CP/MAS) NMR spectra shows C60 resonance at 142.6 ppm. This provides the evidence of interaction between 13C spins in C60 and 1H spins in the γ-CyD host. Ambient temperature experiments on the 13C CP/MAS NMR, with varying contact time, shows that the water associated with γ-CyDs plays an important role in the nuclear relaxation processes. The dynamics of C60 in γ-CyD was investigated using temperature and field-dependent 13C spin-lattice relaxation time measurements. The influence of water on the dynamics of C60 was less significant below 250 K.  相似文献   

18.
G. Xu  Y. S. Pak 《Solid State Ionics》1992,50(3-4):339-343
Proton and deutron NMR have been conducted to investigate the ionic motion in perfluorinated ionomer membranes from Dow Chemical (XUS) and DuPont (NafionR). Two proton relaxation peaks were found in the XUS specimen absorbed with H2O. The major (narrow) peak presented a spin-lattice relaxation time (T1) of 107 ms while the minor (broader) one gave much longer T1. While the former was attributed to the water molecules involved in restricted motion, the latter was expected to be associated with the protons located in the vicinity of the sulfonate groups. Similar to the previous results from the others, only a single peak was detected in NafionR in 1H spectra, indicating that the protons in the different environments were engaging rapid exchange within NMR time scale. In contrast to the inverse proportion dependence of the linewidth on the water sorption in NafionR, the major line of the XUS membrane exhibited insensitive linewidth dependence on the variation of H2O concentration. The difference was attributed to the existence of narrow breaths of the pores in XUS sample, such that free water contribution to the enhancement of proton mobility was limited. The 2H spectra of NafionR were found to possess a doublet, due to nuclear quadrupolar interaction. Dow (XUS) membrane treated in at 100% relative humidity (RH) D2O presented a single peak with the linewidth insensitive to the amount of heavy water absorbed. An additional rise emerged on the “shoulder” of this single peak when treated at 33% RH. It is concluded that XUS membrane does not provide strong hydrogen bonding to eliminate the rapid motion average over the nuclear quadrupole interaction.  相似文献   

19.
31P-magnetic resonance spectroscopy (MRS) has been shown to be a promising method for monitoring tumor response to radiation therapy. The purpose of the work reported here was to investigate whether the usefulness of 31P-MRS might be enhanced by measurement of spin-lattice relaxation times (T1s) in addition to resonance ratios. The work was based on the hypothesis that tumors having a high probability of being controlled locally would show shortened T1s during the treatment course due to reoxygenation and development of necrosis. BEX-t human melanoma xenografts, which show efficient reoxygenation and development of necrosis following single dose irradiation, were used as tumor models. Tumors were treated with single doses of 5.0 or 15.0 Gy and the T1s of the inorganic phosphate and nucleoside triphosphate β resonances were measured as a function of time after irradiation by using the superfast inversion recovery method. Fractional tumor water content was determined by drying excised tumors at 50°C until a constant weight was reached. The T1s in irradiated tumors were either longer than or not significantly different from those in unirradiated control tumors. The increase in the T1s following irradiation coincided in time with a radiation-induced increase in tumor water content, suggesting a causal relationship. The effects of reoxygenation and development of necrosis on T1s were probably overshadowed by the effects of tumor water content. Consequently, the usefulness of 31P-MRS in monitoring tumor response to radiation therapy might not be significantly enhanced by measurement of T1s.  相似文献   

20.
A simple modification of the standard cross-polarization method designed for quenching the proton T dependence when studying polarization transfer is presented. It is demonstrated that by using this simple procedure, new and subtle details of cross-polarization dynamics, previously hidden by the T(1H) effect, can be observed in dipolar-coupled spin systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号