共查询到20条相似文献,搜索用时 31 毫秒
1.
Kocaoglu M Ors F Bulakbasi N Onguru O Ulutin C Secer HI 《Magnetic resonance imaging》2009,27(3):434-440
Purpose
To present proton magnetic resonance spectroscopy and diffusion-weighted imaging (DWI) findings of central neurocytoma (CN).Methods and Materials
Imaging findings of seven patients with the histopathological diagnosis of CN (five male and two female; age range, 21–28 years of age) were evaluated retrospectively. In addition to conventional magnetic resonance imaging features, we also assessed the metabolite ratios and tumor normalized apparent diffusion coefficient (NADC), which was calculated by dividing the tumor apparent diffusion coefficient (ADC) values by normal ADC. Approval from our institutional review board was obtained for this review.Results
The tumor choline/creatine ratios were 5.17±2.38, while N-acetyl aspartate/choline and N-acetyl aspartate/creatine ratios were 0.33±0.15 and 1.84±1.38, respectively. On DWI, tumors had heterogeneous hyperintense appearances when compared with the contralateral parietal lobe white matter and tumor NADC values were 0.63±0.05.Conclusion
Significantly increased choline/creatine and decreased N-acetyl aspartate/choline ratios with lower NADC values in CN resemble high-grade gliomas and complicate the diagnosis. Familarity its physiologic features would help to presurgical diagnosis of ventricular and exraventricular CNs. 相似文献2.
QingShi Zeng HePeng LiuKai Zhang ChuanFu LiGengYin Zhou 《Magnetic resonance imaging》2011,29(1):25-31
Objective
To determine whether metabolite ratios in multivoxel 3D proton MR spectroscopy (1H MRS) is different between low-grade and high-grade gliomas and may be useful for glioma grading.Materials and Methods
Thirty-nine patients (23 male and 16 female; 22-75 years old; mean age, 44.92±12.65 years) suspected of having gliomas underwent 3D 1H MRS examinations. Metabolite ratios [choline (Cho)/creatine (Cr), N-acetylaspartate (NAA)/Cr and Cho/NAA] were measured. Tumor grade was determined by using the histopathologic grading. Receiver operating characteristic analysis of metabolite ratios was performed, and optimum thresholds for tumor grading were determined. The resulting sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for identifying high-grade gliomas were calculated.Results
Diagnostic-quality 3D 1H MRS with readily quantifiable Cho, Cr and NAA peaks was obtained in 94.87% of the cases. The Cho/Cr and Cho/NAA ratios were significantly higher in high-grade than in low-grade glioma (P<.001), whereas the NAA/Cr ratios were significantly lower in high-grade than in low-grade glioma (P<.001). Receiver operating characteristic analysis demonstrated a threshold value of 2.04 for Cho/Cr ratio to provide sensitivity, specificity, PPV and NPV of 84.00%, 83.33%, 91.30% and 71.43%, respectively. Threshold value of 2.20 for Cho/NAA ratio resulted in sensitivity, specificity, PPV and NPV of 88.00%, 66.67%, 84.62% and 72.73%, respectively. Overall diagnostic accuracy was not statistically significantly different between Cho/Cr and Cho/NAA ratios (χ2=0.093, P=.76).Conclusion
Metabolite ratios of low-grade gliomas were significantly different from high-grade gliomas. Cho/Cr and Cho/NAA ratios could have the superior diagnostic performance in predicting the glioma grade. 相似文献3.
Mikko I. Kettunen Kevin M. Brindle 《Progress in Nuclear Magnetic Resonance Spectroscopy》2005,47(3-4):175-185
4.
Technical evaluation of in vivo abdominal fat and IMCL quantification using MRI and MRSI at 3 T 总被引:1,自引:0,他引:1
Li X Youngren JF Hyun B Sakkas GK Mulligan K Majumdar S Masharani UB Schambelan M Goldfine ID 《Magnetic resonance imaging》2008,26(2):188-197
OBJECTIVES: The objectives of this study were to develop protocols that measure abdominal fat and calf muscle lipids with magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS), respectively, at 3 T and to examine the correlation between these parameters and insulin sensitivity. MATERIALS AND METHODS: Ten nondiabetic subjects [five insulin-sensitive (IS) subjects and five insulin-resistant (IR) subjects] were scanned at 3 T. Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) were segmented semiautomatically from abdominal imaging. Intramyocellular lipids (IMCL) in calf muscles were quantified with single-voxel MRS in both soleus and tibialis anterior muscles and with magnetic resonance spectroscopic imaging (MRSI). RESULTS: The average coefficient of variation (CV) of VAT/(VAT+SAT) was 5.2%. The interoperator CV was 1.1% and 5.3% for SAT and VAT estimates, respectively. The CV of IMCL was 13.7% in soleus, 11.9% in tibialis anterior and 2.9% with MRSI. IMCL based on MRSI (3.8+/-1.2%) were significantly inversely correlated with glucose disposal rate, as measured by a hyperinsulinemic-euglycemic clamp. VAT volume correlated significantly with IMCL. IMCL based on MRSI for IR subjects was significantly greater than that for IS subjects (4.5+/-0.9% vs. 2.8+/-0.5%, P=.02). CONCLUSION: MRI and MRS techniques provide a robust noninvasive measurement of abdominal fat and muscle IMCL, which are correlated with insulin action in humans. 相似文献
5.
Osteoarthritis is a common joint disorder that is most prevalent in the knee joint. Knee osteoarthritis (OA) can be characterized by the gradual loss of articular cartilage (AC). Formation of lesion, fissures and cracks on the cartilage surface has been associated with degenerative AC and can be measured by morphological assessment. In addition, loss of proteoglycan from extracellular matrix of the AC can be measured at early stage of cartilage degradation by physiological assessment. In this case, a biochemical phenomenon of cartilage is used to assess the changes at early degeneration of AC. In this paper, a method to measure local sodium concentration in AC due to proteoglycan has been investigated. A clinical 1.5-T magnetic resonance imaging (MRI) with multinuclear spectroscopic facility is used to acquire sodium images and quantify local sodium content of AC. An optimised 3D gradient-echo sequence with low echo time has been used for MR scan. The estimated sodium concentration in AC region from four different data sets is found to be ~ 225 ± 19 mmol/l, which matches the values that has been reported for the normal AC. This study shows that sodium images acquired at clinical 1.5-T MRI system can generate an adequate quantitative data that enable the estimation of sodium concentration in AC. We conclude that this method is potentially suitable for non-invasive physiological (sodium content) measurement of articular cartilage. 相似文献
6.
K. M. Horton M. S. Levey F. A. Owl-Smith R. G. Azizkhan M. L. Schiebler 《Magnetic resonance imaging》1989,7(6):689-691
We present here the first report of an extraskeletal metastasizing presacral chordoma found in a child. MRI of this large lesion showed heterogeneous signal intensity on both the SE 550/30 and on SE 2440/100 images. MRI demonstrated this mass to be separate from the sacrum and provided nonionizing cross-sectional imaging prior to attempted surgical resection. 相似文献
7.
The utility of multivoxel two-dimensional chemical shift imaging in the clinical environment will ultimately be determined by the imaging time and the metabolite peaks that can be detected. Different k-space sampling schemes can be characterized by their minimum required imaging time. The use of spiral-based readout gradients effectively reduces the minimum scan time required due to simultaneous data acquisition in three k-space dimensions (k(x), k(y) and k(f(2))). A 3-T spiral-based multivoxel two-dimensional spectroscopic imaging sequence using the PRESS excitation scheme was implemented. Good performance was demonstrated by acquiring preliminary in vivo data for applications, including brain glutamate imaging, metabolite T(2) quantification and high-spatial-resolution prostate spectroscopic imaging. All protocols were designed to acquire data within a 17-min scan time at a field strength of 3 T. 相似文献
8.
Esin Ozturk-Isik Albert P. Chen Jason C. Crane Wei Bian Duan Xu Eric T. Han Susan M. Chang Daniel B. Vigneron Sarah J. Nelson 《Magnetic resonance imaging》2009,27(9):1249-1257
Purpose
The goal of this study was to implement time efficient data acquisition and reconstruction methods for 3D magnetic resonance spectroscopic imaging (MRSI) of gliomas at a field strength of 3T using parallel imaging techniques.Methods
The point spread functions, signal to noise ratio (SNR), spatial resolution, metabolite intensity distributions and Cho:NAA ratio of 3D ellipsoidal, 3D sensitivity encoding (SENSE) and 3D combined ellipsoidal and SENSE (e-SENSE) k-space sampling schemes were compared with conventional k-space data acquisition methods.Results
The 3D SENSE and e-SENSE methods resulted in similar spectral patterns as the conventional MRSI methods. The Cho:NAA ratios were highly correlated (P<.05 for SENSE and P<.001 for e-SENSE) with the ellipsoidal method and all methods exhibited significantly different spectral patterns in tumor regions compared to normal appearing white matter. The geometry factors ranged between 1.2 and 1.3 for both the SENSE and e-SENSE spectra. When corrected for these factors and for differences in data acquisition times, the empirical SNRs were similar to values expected based upon theoretical grounds. The effective spatial resolution of the SENSE spectra was estimated to be same as the corresponding fully sampled k-space data, while the spectra acquired with ellipsoidal and e-SENSE k-space samplings were estimated to have a 2.36–2.47-fold loss in spatial resolution due to the differences in their point spread functions.Conclusion
The 3D SENSE method retained the same spatial resolution as full k-space sampling but with a 4-fold reduction in scan time and an acquisition time of 9.28 min. The 3D e-SENSE method had a similar spatial resolution as the corresponding ellipsoidal sampling with a scan time of 4:36 min. Both parallel imaging methods provided clinically interpretable spectra with volumetric coverage and adequate SNR for evaluating Cho, Cr and NAA. 相似文献9.
Laurence Gury-Paquet Antoine Millon Fatima Salami Alexandru Cernicanu Jean-Yves Scoazec Philippe Douek Loïc Boussel 《Magnetic resonance imaging》2012
Purpose
To assess the sensitivity and specificity of intra-plaque hemorrhage (IPH), large lipid-rich necrotic core (LR-NC) and ulceration or cap rupture (UCR) for symptomatic carotid plaque characterization and to evaluate a new imaging score [Hemorrhage, Ulceration or cap rupture, Lipid-rich necrotic Core (HULC) score based on the sum of presence/absence of IPH, UCR and LR-NC; range 0–3] for assessment of recently symptomatic carotid plaques.Material and methods
Twenty-seven recently symptomatic (< 8 weeks) and 36 asymptomatic patients with a carotid plaque thicker than 2 mm were prospectively imaged on a 3-T magnetic resonance (MR) system using high-resolution, multi-contrast MR sequences. Prior to analysis, all images were reviewed to assess image quality of each sequence. Sensitivity and specificity of IPH, LR-NC, UCR and HULC scores were calculated.Results
Fifty-one patients were analyzed (26 symptomatic carotids and 67 asymptomatic carotids) after exclusion of studies with poor image quality. Sensitivity and specificity for symptomatic carotid plaque was, respectively, 46.1% and 97% for IPH, 84.6% and 73.1% for UCR and 80.7% and 76.1% for LR-NC. A HULC score of 2 or more showed a sensitivity of 73% and a specificity of 92.5%.Conclusion
At 3 T, intra-plaque hemorrhage is the most specific criterion to characterize symptomatic carotid plaque. The HULC score offers the best compromise between sensitivity and specificity. 相似文献10.
Sodium magnetic resonance (MR) imaging is a promising technique for detecting changes of proteoglycan (PG) content in cartilage associated with knee osteoarthritis. Despite its potential clinical benefit, sodium MR imaging in vivo is challenging because of intrinsically low sodium concentration and low MR signal sensitivity. Some of the challenges in sodium MR imaging may be eliminated by the use of a high-sensitivity radiofrequency (RF) coil, specifically, a dual-tuned (DT) proton/sodium RF coil which facilitates the co-registration of sodium and proton MR images and the evaluation of both physiochemical and structural properties of knee cartilage. Nevertheless, implementation of a DT proton/sodium RF coil is technically difficult because of the coupling effect between the coil elements (particularly at high field) and the required compact design with improved coil sensitivity. In this study, we applied a multitransceiver RF coil design to develop a DT proton/sodium coil for knee cartilage imaging at 3 T. With the new design, the size of the coil was minimized, and a high signal-to-noise ratio (SNR) was achieved. DT coil exhibited high levels of reflection S11 (~-21 dB) and transmission coefficient S12 (~-19 dB) for both the proton and sodium coils. High SNR (range 27-38) and contrast-to-noise ratio (CNR) (range 15-21) were achieved in sodium MR imaging of knee cartilage in vivo at 3-mm(3) isotropic resolution. This DT coil performance was comparable to that measured using a sodium-only birdcage coil (SNR of 28 and CNR of 20). Clinical evaluation of the DT coil on four normal subjects demonstrated a consistent acquisition of high-resolution proton images and measurement of relative sodium concentrations of knee cartilages without repositioning of the subjects during the same MR scanning session. 相似文献
11.
Xiuzhong Yao Tiantao Kuang Li Wu Hao Feng Hao Liu Weizhong Cheng Shengxiang Rao He Wang Mengsu Zeng 《Magnetic resonance imaging》2014
Objectives
To investigate and optimize diffusion-weighted imaging (DWI) acquisitions for pancreatic cancer at 3.0 T.Methods
Forty-five patients with pancreatic cancer were examined by four DWI acquisitions with b values = 0 and 600 s/mm2 at 3.0 T, including breath-holding DWI (BH-DWI), respiratory-triggered DWI (TRIG-DWI), respiratory-triggered DWI with inversion–recovery technique (TRIGIR-DWI), and free-breathing DWI with inversion–recovery technique (FBIR-DWI). Artifacts, contrast ratio (CR), contrast-to-noise ratio (CNR) and apparent diffusion coefficient (ADC) of pancreatic cancer were statistically compared among DWI acquisitions.Results
TRIGIR-DWI displayed the lowest artifacts and highest CR compared to other DWI acquisitions. CNRs of pancreatic cancer in TRIG-DWI and TRIGIR-DWI were statistically higher than that in FBIR-DWI and BH-DWI. Different ADCs between pancreatic cancer and noncancerous pancreatic tissues were noticed by a paired-samples T test in TRIG-DWI (p = 0.017), TRIGIR-DWI (p = 0.00001) and FBIR-DWI (p = 0.000041).Conclusions
TRIGIR-DWI may be the optimal acquisition of DWI for pancreatic cancer at 3.0 T. 相似文献12.
Hang Joon Jo Jong-Min Lee Jae-Hun Kim Chi-Hoon Choi Do-Hyung Kang Jun Soo Kwon Sun I. Kim 《Magnetic resonance imaging》2009
Surface-based functional magnetic resonance imaging (fMRI) analysis is more sensitive and accurate than volume-based analysis for detecting neural activation. However, these advantages are less important in practical fMRI experiments with commonly used 1.5-T magnetic resonance devices because of the resolution gap between the echo planar imaging data and the cortical surface models. We expected high-resolution segmented partial brain echo planar imaging (EPI) data to overcome this problem, and the activation patterns of the high-resolution data could be different from the low-resolution data. For the practical applications of surface-based fMRI analysis using segmented EPI techniques, the effects of some important factors (e.g., activation patterns, registration and local distortions) should be intensively evaluated because the results of surface-based fMRI analyses could be influenced by them. In this study, we demonstrated the difference between activations detected from low-resolution EPI data, which were covering whole brain, and high-resolution segmented EPI data covering partial brain by volume- and surface-based analysis methods. First, we compared the activation maps of low- and high-resolution EPI datasets detected by volume- and surface-based analyses, with the spatial patterns of activation clusters, and analyzed the distributions of activations in occipital lobes. We also analyzed the high-resolution EPI data covering motor areas and fusiform gyri of human brain, and presented the differences of activations detected by volume- and surface-based methods. 相似文献
13.
Huang J Wang AM Shetty A Maitz AH Yan D Doyle D Richey K Park S Pieper DR Chen PY Grills IS 《Magnetic resonance imaging》2011,29(7):993-1001
Objective
To determine the accuracy of magnetic resonance spectroscopy (MRS), perfusion MR imaging (MRP), or volume modeling in distinguishing tumor progression from radiation injury following radiotherapy for brain metastasis.Methods
Twenty-six patients with 33 intra-axial metastatic lesions who underwent MRS (n=41) with or without MRP (n=32) after cranial irradiation were retrospectively studied. The final diagnosis was based on histopathology (n=4) or magnetic resonance imaging (MRI) follow-up with clinical correlation (n=29). Cho/Cr (choline/creatinine), Cho/NAA (choline/N-acetylaspartate), Cho/nCho (choline/contralateral normal brain choline) ratios were retrospectively calculated for the multi-voxel MRS. Relative cerebral blood volume (rCBV), relative peak height (rPH) and percentage of signal-intensity recovery (PSR) were also retrospectively derived for the MRPs. Tumor volumes were determined using manual segmentation method and analyzed using different volume progression modeling. Different ratios or models were tested and plotted on the receiver operating characteristic curve (ROC), with their performances quantified as area under the ROC curve (AUC). MRI follow-up time was calculated from the date of initial radiotherapy until the last MRI or the last MRI before surgical diagnosis.Results
Median MRI follow-up was 16 months (range: 2-33). Thirty percent of lesions (n=10) were determined to be radiation injury; 70% (n=23) were determined to be tumor progression. For the MRS, Cho/nCho had the best performance (AUC of 0.612), and Cho/nCho >1.2 had 33% sensitivity and 100% specificity in predicting tumor progression. For the MRP, rCBV had the best performance (AUC of 0.802), and rCBV >2 had 56% sensitivity and 100% specificity. The best volume model was percent increase (AUC of 0.891); 65% tumor volume increase had 100% sensitivity and 80% specificity.Conclusion
Cho/nCho of MRS, rCBV of MRP, and percent increase of MRI volume modeling provide the best discrimination of intra-axial metastatic tumor progression from radiation injury for their respective modalities. Cho/nCho and rCBV appear to have high specificities but low sensitivities. In contrast, percent volume increase of 65% can be a highly sensitive and moderately specific predictor for tumor progression after radiotherapy. Future incorporation of 65% volume increase as a pretest selection criterion may compensate for the low sensitivities of MRS and MRP. 相似文献14.
Amita Shukla-Dave Nigar Fatma Raja Roy S. Srivastava R.K. Chatterjee V. Govindaraju A.Kasi Viswanathan P. Raghunathan 《Magnetic resonance imaging》1997,15(10):1193-1198
1H Magnetic resonance imaging and 31P magnetic resonance spectroscopy (MRS) have been carried out in experimental rodent filariasis, i.e., Acanthocheilonema viteae infection in the rodent host, Mastomys coucha. The T2-weighted image of the infected host shows fine hyperintense thread like structures of adult filariid nests in the cervical region. 31P MRS of normal and infected hosts, localized over the same region of interest, show seven major peaks corresponding to phosphomonoesters (including glucose-6-phosphate, fructose-6-phosphate, fructose-1-6-diphosphate, phosphorylcholine, and adenine monophosphate or AMP), inorganic phosphate, glycerophosphorylcholine, phosphoenolpyruvate, phosphocreatine and nucleoside di- and tri-phosphates. Concentrations of phosphomonoesters (PMEs) are higher in the normal rodent compared with the infected ones. In vivo 31P MRS provides a non-invasive assessment of tissue bioenergetics and phospholipid metabolism. 相似文献
15.
Yang Shin Park Chang Hee Lee Ji Hoon Kim Baek Hui Kim Jeoung Hyun Kim Kyeong Ah. Kim Cheol Min Park 《Magnetic resonance imaging》2014
Purpose
To determine whether gadolinium ethoxybenzyldiethylenetriaminepentaacetic acid (Gd-EOB-DTPA) administration affects hepatic fat quantification by magnetic resonance spectroscopy (MRS) using the fast breath-hold high-speed T2-corrected multiecho (HISTO) technique.Materials and Methods
Seventy-six patients underwent Gd-EOB-DTPA-enhanced liver MR and 15 sec breath-hold HISTO MRS (4 times), twice before and twice after Gd-EOB-DTPA administration. Two consecutive MRSs were performed immediately before the dynamic study. Post-contrast MRS was performed twice continuously, approximately 15 min after contrast injection, prior to obtaining 20-min hepatobiliary phase images. We used paired t-test and intraclass correlation coefficient (ICC) to evaluate the variability of the mean fat fraction (FF) on pre-contrast MRS and post-contrast MRS and the effect of the contrast agent on the mean FF.Results
The mean FFs were not significantly different between pre-contrast MRS and post-contrast MRS (6.50% ± 6.54 versus 6.70% ± 6.61, P = 0.15). The ICC of FF calculation between pre- and post-contrast MRS was 0.984. The ICCs for the FF magnitude between pre- and post-contrast MRS were 0.452, 0.771, and 0.995 for FF < 5%, FF 5–10%, and FF ≥ 10%, respectively.Conclusion
Gd-EOB-DTPA does not appear to influence hepatic fat quantification, especially for patients with hepatic steatosis. 相似文献16.
Purpose
The purpose of the study was to validate the diagnostic performance of high-resolution isovolumetric magnetic resonance arthrography (MRA) for intrinsic ligament and triangular fibrocartilage complex (TFCC) tears of the wrist as compared to conventional MR imaging (MRI).Materials and methods
Forty-eight patients with traumatic TFCC tears at arthroscopy were enrolled. All patients had underwent proton-density- and T2-weighted MRI before arthrography and three-dimensional T1 high-resolution isovolumetric examination (3D-THRIVE) MRA on a 3-T MR. We assessed the presence of scapholunate interosseous ligament (SLIL)/lunotriquetral interosseous ligament (LTIL) or TFCC tears using the arthroscopy as a gold standard.Results
Arthroscopy revealed 37 TFCC central tears, 15 TFCC peripheral tears, 20 SLIL tears and 13 LTIL tears. Sensitivities of MRI and MRA were 70.3% and 94.6% for detection of TFCC central tears, 60.0% and 93.3% for detection of TFCC peripheral tears, 65.0% and 85.0% for SLIL tears, and 61.5% and 84.6% for LTIL tears. The specificity of the MRI was 100% for the detection of ligaments and TFCC tears. The specificities of the MRA for detection of TFCC central tears, TFCC peripheral tears, SLIL tears and LTIL tears were 100%, 97%, 96.4% and 100%, respectively.Conclusion
Isovolumetric 3D-THRIVE wrist MRA provided better results for depiction of intrinsic ligament and TFCC tears than wrist MRI. 相似文献17.
Fifty-four independent scans were performed in two volunteers covering one anatomic region in each (the brain and knee) with the purpose of ascertaining the agreement between predicted and measured signal-to-noise ratios (SNR). Systematically varied parameters were number of excitations (NEX), field of view (FOV), section thickness (dz), and the number of phase-encoding steps (Ny). Correlation coefficients of measured versus predicted SNR were 0.82 and 0.86, respectively, in the anatomies studied. Significantly improved correlations were found for data subpopulations in which NEX was held constant. To assess the criteria guiding reader preference, a blinded study was performed in which radiologists were asked to rate images from least to most desirable. In order to quantitatively determine the criteria for reader preference, plots of mean rating versus SNR, voxel volume, and an image quality index [IQI = SNR/(voxel volume)] were performed. The latter was found to be a better predictor of reader preference than either SNR or spatial resolution alone. The data suggests T1-weighted scan protocols yielding SNR of approximately 20 are preferable with any excess SNR being traded for smaller voxel size or shorter scan times. 相似文献
18.
The purpose of this study was to investigate the feasibility of diffusion-weighted imaging (DWI) in detecting synovitis of wrist and hand in patients with rheumatoid arthritis (RA) and evaluate its sensitivity, specificity and accuracy as compared to T2-weighted imaging (T2WI) with short tau inversion recovery (STIR) with the reference standard contrast-enhanced magnetic resonance imaging (CE-MRI). Twenty-five patients with RA underwent MR examinations including DWI, T2WI with STIR and CE-MRI. MR images were reviewed for the presence and location of synovitis of wrist and hand. The sensitivity, specificity and accuracy of DWI and T2WI with STIR were calculated respectively and then compared. All patients included in this study completed MR examinations and yielded diagnostic image quality of DWI. For individual joint, there was good to excellent inter-observer agreement (k = 0.62–0.83) using DWI images, T2WI with STIR images and CE-MR images, respectively. There was a significance between DWI and T2WI with STIR in analyzing proximal interphalangeal joints II–V, respectively (P < 0.05). The k-values for the detection of synovitis indicated excellent overall inter-observer agreements using DWI images (k = 0.86), T2WI with STIR images (k = 0.85) and CE-MR images (k = 0.91), respectively. Overall, DWI demonstrated a sensitivity, specificity and accuracy of 75.6%, 89.3% and 84.6%, respectively, for detection of synovitis, while 43.0%, 95.7% and 77.6% for T2WI with STIR, respectively. DWI showed positive lesions much better and more than T2WI with STIR. Our results indicate that DWI presents a novel non-invasive approach to contrast-free imaging of synovitis. It may play a role as an addition to standard protocols. 相似文献
19.
Chao Ma Yan-jun Li Chun-shu Pan He Wang Jian Wang Shi-yue Chen Jian-ping Lu 《Magnetic resonance imaging》2014
Diffusion weighted magnetic resonance imaging (DWI) has been mostly acquired using single-shot echo-planar imaging (ss EPI) to minimize motion induced artifacts. The spatial resolution, however, is inherently limited in ss EPI especially for abdominal imaging, even with the advances in parallel imaging. A novel method of reduced Field of View ss EPI (rFOV ss EPI) has achieved high resolution DWI in human carotid artery, spinal cord with reduced blurring and higher spatial resolution than conventional ss EPI, but it has not been used to pancreas imaging. In the work, comparisons between the full FOV ss-DW EPI and rFOV ss-DW EPI in image qualities and ADC values of pancreatic tumors and normal pancreatic tissues were performed to demonstrate the feasibility of pancreatic high resolution rFOV DWI. There were no significant differences in the mean ADC values between full FOV DWI and rFOV DWI for the 17 subjects using b = 600 s/mm2 (P = 0.962). However, subjective scores of image quality was significantly higher at rFOV ss DWI (P = 0.008 and 0.000 for b-value = 0 s/mm2 and 600 s/mm2 respectively). The spatial resolution of DWI for pancreas was increased by a factor of over 2.0 (from almost 3.0 mm/pixel to 1.25 mm/pixel) using rFOV ss EPI technique. Reduced FOV ss EPI can provide good DW images and is promising to benefit applications for pancreatic diseases. 相似文献
20.
Young Han Lee Daekeon Lim Eunju Kim Sungjun Kim Ho-Taek Song Jin-Suck Suh 《Magnetic resonance imaging》2014