共查询到20条相似文献,搜索用时 0 毫秒
1.
There are extensive concerns pertaining to the idea that students do not develop sufficient mathematical competence. This problem is at least partially related to the teaching of procedure-based learning. Although better teaching methods are proposed, there are very limited research insights as to why some methods work better than others, and the conditions under which these methods are applied. The present paper evaluates a model based on students’ own creation of knowledge, denoted creative mathematically founded reasoning (CMR), and compare this to a procedure-based model of teaching that is similar to what is commonly found in schools, denoted algorithmic reasoning (AR). In the present study, CMR was found to outperform AR. It was also found cognitive proficiency was significantly associated to test task performance. However the analysis also showed that the effect was more pronounced for the AR group. 相似文献
2.
This case study explores the mathematics engagement and teaching practice of a beginning secondary school teacher. The focus is on the mathematical opportunities available to her students (the classroom mathematics) and how they relate to the teacher's personal capacity and tendencies for mathematical engagement (her personal mathematics). We use a mathematical process-and-action approach to analyze mathematical engagement and then employ the teaching triad—mathematical challenge, sensitivity to students, and management of learning—to situate mathematical engagement within the larger context of teaching practice. The article develops the construct of locally logical mathematics to underscore the cogency of mathematical engagement in the classroom as part of a coherent mathematical system that is embedded within a teaching practice. Contributions of the study include the process-and-action approach, especially in tandem with the teaching triad, as a tool to understand nuances of mathematical engagement and differences in demand between written and implemented tasks. 相似文献
3.
Roland W. Scholz 《ZDM》2007,39(1-2):51-61
In the 1950s, game and decision theoretic modeling emerged—based on applications in the social sciences—both as a domain of mathematics and interdisciplinary fields. Mathematics educators, such as Hans Georg Steiner, utilized game theoretical modeling to demonstrate processes of mathematization of real world situations that required only elementary intuitive understanding of sets and operations. When dealing with n-person games or voting bodies, even students of the 11th and 12th grade became involved in what Steiner called the evolution of mathematics from situations, building of mathematical models of given realities, mathematization, local organization and axiomatization. Thus, the students could participate in processes of epistemological evolutions in the small scale. This paper introduces and discusses the epistemological, cognitive and didactical aspects of the process and the roles these activities can play in the learning and understanding of mathematics and mathematical modeling. It is suggested that a project oriented study of game and decision theory can develop situational literacy, which can be of interest for both mathematics education and general education. 相似文献
4.
Statements conveying a degree of certainty or doubt, in the form of hedging, have been linked with logical inference in students’ talk (Rowland, 2000). Considering the current emphasis on increasing student autonomy for effective mathematical discourse, I posit a relationship between hedging and student autonomy. In the current study, high school Geometry students’ frequency of producing hedged mathematical statements were correlated with their perceived mathematical autonomy to determine if a relationship existed. Results found a strong and statistically significant correlation, providing support for a connection between students’ hedging and their perceived autonomy. However, additional analysis revealed that perceptions of mathematical competence and social relatedness were also influential to hedging. Implications of these results are discussed. 相似文献
5.
Joseph Petrillo 《Ricerche di matematica》2013,62(1):127-137
A subgroup property $\alpha $ is transitive in a group $G$ if $U \alpha V$ and $V \alpha G$ imply that $U \alpha G$ whenever $U \le V \le G$ , and $\alpha $ is persistent in $G$ if $U \alpha G$ implies that $U \alpha V$ whenever $U \le V \le G$ . Even though a subgroup property $\alpha $ may be neither transitive nor persistent, a given subgroup $U$ may have the property that each $\alpha $ -subgroup of $U$ is an $\alpha $ -subgroup of $G$ , or that each $\alpha $ -subgroup of $G$ in $U$ is an $\alpha $ -subgroup of $U$ . We call these subgroup properties $\alpha $ -transitivity and $\alpha $ -persistence, respectively. We introduce and develop the notions of $\alpha $ -transitivity and $\alpha $ -persistence, and we establish how the former property is related to $\alpha $ -sensitivity. In order to demonstrate how these concepts can be used, we apply the results to the cases in which $\alpha $ is replaced with “normal” and the “cover-avoidance property.” We also suggest ways in which the theory can be developed further. 相似文献
6.
This paper reports on a research study based on data from experimental teaching. Undergraduate dance majors were invited, through real-world problem tasks that raised central conceptual issues, to invent major ideas of calculus. This study focuses on work and thinking by these students, as they sought to build key ideas, representations and compelling lines of reasoning. Speiser and Walter's psychological and logical perspectives (see Speiser, Walter, & Sullivan, 2007) provide opportunities to focus not just on the students’ thinking, but perhaps most especially, through detailed examination of important choices, on their exercise of agency as learners. Close analysis of student data through these lenses triggered the development of two new analytic categories—logic of agency and logic of proof. The analysis presented here treats students as active shapers of their own experience and understanding, whose choices open opportunities for continued growth and learning, not just for themselves but also for each other. 相似文献
7.
This report documents how one undergraduate student used set-based reasoning to reinvent logical principles related to conditional statements and their proofs. This learning occurred in a teaching experiment intended to foster abstraction of these logical relationships by comparing the relationships between predicates within the conditional statements and inference structures among various proofs (in number theory and geometry). We document the progression of Theo’s set-based emergent model (Gravemeijer, 1999) from a model-of the truth of statements to a model-for logical relationships. This constitutes some of the first evidence for how students can abstract such logical concepts in this way and provides evidence for the viability of the learning progression that guided the instructional design. 相似文献
8.
9.
Material objects can tell us much about mathematical practice. In 1899, Albert Sexton, a Philadelphia mechanical engineer, received the John Scott Medal of the Franklin Institute for his invention of the omnimetre. This inexpensive circular slide rule was one of a host of computing devices that became common in the United States around 1900. It is inscribed “NUMERI MUNDUM REGUNT”. In part because of instruments such as the omnimetre, numbers increasingly ruled the practical world of the late 19th and early 20th century. This changed not only engineering, but mathematics education and mathematical work. 相似文献
10.
11.
12.
Proof and reasoning are central to learning mathematics with understanding. Yet proof is seen as challenging to teach and to learn. In a capstone course for preservice teachers, we developed instructional modules that guided prospective secondary mathematics teachers (PSTs) through a cycle of learning about the logical aspects of proof, then planning and implementing lessons in secondary classrooms that integrate these aspects with traditional mathematics curriculum in the United States. In this paper we highlight our framework on mathematical knowledge for teaching proof and focus on some of the logical aspects of proof that are seen as particularly challenging (four proof themes). We analyze 60 lesson plans, video recordings of a subset of 13 enacted lessons, and the PSTs’ self- reported data to shed light on how the PSTs planned and enacted lessons that integrate these proof themes. The results provide insights into successes and challenges the PSTs encountered in this process and illustrate potential pathways for preparing PSTs to enact reasoning and proof in secondary classrooms. We also highlight the design principles for supporting the development of PSTs’ mathematical knowledge for teaching proof. 相似文献
13.
With reference to a multiobjective two-person nonzero-sum game, we define nondominated equilibrium solutions and provide a
necessary and sufficient condition for a pair of mixed strategies to be a nondominated equilibrium solution. Using the necessary
and sufficient condition, we formulate a mathematical programming problem yielding nondominated equilibrium solutions. We
give a numerical example and demonstrate that nondominated equilibrium solutions can be obtained by solving the formulated
mathematical programming problem. 相似文献
14.
Stephen Lerman 《ZDM》2013,45(4):623-631
Whilst research on the teaching of mathematics and the preparation of teachers of mathematics has been of major concern in our field for some decades, one can see a proliferation of such studies and of theories in relation to that work in recent years. This article is a reaction to the other papers in this special issue but I attempt, at the same time, to offer a different perspective. I examine first the theories of learning that are either explicitly or implicitly presented, noting the need for such theories in relation to teacher learning, separating them into: socio-cultural theories; Piagetian theory; and learning from practice. I go on to discuss the role of social and individual perspectives in authors’ approach. In the final section I consider the nature of the knowledge labelled as mathematical knowledge for teaching (MKT). I suggest that there is an implied telos about ‘good teaching’ in much of our research and that perhaps the challenge is to study what happens in practice and offer multiple stories of that practice in the spirit of “wild profusion” (Lather in Getting lost: Feminist efforts towards a double(d) science. SUNY Press, New York, 2007). 相似文献
15.
Rudolf Straesser 《ZDM》2007,39(1-2):165-171
16.
17.
Explicit Stability Zones for Cournot Game with 3 and 4 Competitors 总被引:10,自引:0,他引:10
H.N. Agiza 《Chaos, solitons, and fractals》1998,9(12):1864-1966
The dynamical system of 3 and 4 competitors in a Cournot game is studied. The stability of its fixed points (Nash-equilibria) are also investigated. The stable and unstable regions are explicitly shown. The bifurcation characteristics are found. Periodic orbits with different periods 7, 25, 18, 13, 17 etc., are detected in both cases. The study of these models is very rich in bifurcation phenomena. 相似文献
18.
We introduce a topological graph parameter σ(G), defined for any graph G. This parameter characterizes subgraphs of paths, outerplanar graphs, planar graphs, and graphs that have a flat embedding
as those graphs G with σ(G)≤1,2,3, and 4, respectively. Among several other theorems, we show that if H is a minor of G, then σ(H)≤σ(G), that σ(K
n
)=n−1, and that if H is the suspension of G, then σ(H)=σ(G)+1. Furthermore, we show that μ(G)≤σ(G) + 2 for each graph G. Here μ(G) is the graph parameter introduced by Colin de Verdière in [2]. 相似文献
19.
20.
Guershon Harel 《ZDM》2013,45(3):483-489
This special issue discusses various pedagogical innovations and myriad of significant findings. This commentary is not a synthesis of these contributions, but a summary of my own reflections on selected aspects of the nine papers comprising the special issue. Four themes subsume these reflections: (1) Gestural Communication (Alibali, Nathan, Church, Wolfgram, Kim and Knuth 2013); (2) Development of Ways of Thinking (Jahnke and Wambach 2013; Lehrer, Kobiela and Weinberg 2013; Mariotti 2013; Roberts and A. Stylianides 2013; Shilling-Traina and G. Stylianides 2013; Tabach, Hershkowitz and Dreyfus 2013); (3) Learning Mathematics through Representation (Saxe, Diakow and Gearhart 2013); and (4) Challenges in Dialogic Teaching (Ruthven and Hofmann 2013). 相似文献