首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A theoretical study of an exciton confined in a quantum dot with the Woods–Saxon potential is presented. The great advantage of our methodology is that it enables confinement regimes by varying two parameters in the model potential. Calculations are made by using the method of the numerical diagonalization of the Hamiltonian matrix within the effective-mass approximation. The binding energies of the ground (L=0L=0) and first excited (L=1L=1) states are obtained as functions of the dot radius. Based on the computed energies and wave functions, the linear, the third-order nonlinear and the total optical absorption coefficients have been examined between the ground and the first excited states. The results are presented as a function of the incident photon energy for the different values of the dot radius and the barrier slope. It is found that the binding energy and the optical properties of the excitons in a quantum dot are strongly affected by the dot radius and the barrier slope of the confinement potential.  相似文献   

2.
E. B. Starikov 《哲学杂志》2013,93(29):3435-3462
The coupling of all twelve possible conformational modes of DNA duplexes and four pair-wise correlations among them to positive charge (hole) motion through these biopolymers has been systematically analysed in regular homogeneous B-DNA trimers and tetramers of adenosine–thymidine (AT) and guanosine–cytidine (GC) Watson–Crick pairs using PM3 semiempirical quantum chemistry. Of these only five modes have been found to be most strongly coupled to the electron motion in DNA, namely stretching of H-bonding both in AT and GC, correlated Buckle–Rise and Stagger–Tilt motions in GC and correlated Shear–Twist motion in AT. The parameters for the corresponding polaronic Hamiltonians have been estimated. The nature of these DNA polarons is discussed taking into account the relevant experimental results currently available.  相似文献   

3.
The discharge capacity of zinc–carbon cells (Leclanche cell) is limited by the performance of the cathode material (MnO2) and physical properties of carbon powder added to MnO2. Acetylene black, Vulcan XC 72, Black Pearls 2000, and a carbon composite (consisting of 50% acetylene black and 50% Black Pearls 2000®) were evaluated as cathode additives in test cells and were compared. The study indicated that cathode mixture with Black Pearls 2000®showed improvement in performance than acetylene black, the most commonly used carbon in commercial zinc–carbon cells. The performance of the test cells was found to have a correlation with the physical properties of the carbons used.  相似文献   

4.
Positron annihilation lifetime spectroscopy was used in a room temperature study of the influence of heat treatment on behaviour of vacancies in Fe0.97Re0.03 and Fe0.94Re0.06 alloys. In this experiment, the vacancies were created during the formation and further mechanical processing of the iron systems under consideration so the lifetime spectra of positrons were collected at least twice. The first samples were taken just after the melting process in an arc furnace, and the second ones were taken for the specimens annealed at 1,270 K and then cold-rolled at room temperature. After that, the spectra were measured for all studied samples after annealing at some temperatures gradually increasing from 300 to 1,270 K. It was found that vacancy-Re pairs are the dominant type of structural defects in alloys just after the melting process. In the case of alloys after a cold rolling process, the dominant type of structural defects is vacancies associated with edge dislocations. Moreover, for cold-rolled samples annealed at 473–573 K, the growth of the vacancy clusters associated with edge dislocations is observed by an increase in the mean positron lifetime. Finally, at temperatures above 573 K, vacancy clusters associated with edge dislocations as well as vacancy-Re pairs become unstable, and freely migrating vacancies sink at grain boundaries.  相似文献   

5.
We investigate the effects of spin–orbit interaction (SOI) and valley mixing on the transport and dynamical properties of a carbon nanotube (CNT) quantum dot in the Kondo regime. As these perturbations break the pseudo-spin symmetry in the CNT spectrum but preserve time-reversal symmetry, they induce a finite splitting Δ between formerly degenerate Kramers pairs. Correspondingly, a crossover from the SU(4) to the SU(2)-Kondo effect occurs as the strength of these symmetry breaking parameters is varied. Clear signatures of the crossover are discussed both at the level of the spectral function as well as of the conductance. In particular, we demonstrate numerically and support with scaling arguments that the Kondo temperature scales inversely with the splitting Δ in the crossover regime. In presence of a finite magnetic field, time reversal symmetry is also broken. We investigate the effects of both parallel and perpendicular fields (with respect to the tube's axis) and discuss the conditions under which Kondo revivals may be achieved.  相似文献   

6.
Babunts  R. A.  Anisimov  A. N.  Breev  I. D.  Gurin  A. S.  Bundakova  A. P.  Muzafarova  M. V.  Mokhov  E. N.  Baranov  P. G. 《JETP Letters》2021,114(8):463-469
JETP Letters - Optically induced alignment and polarization of electron and nuclear spins in color centers with electron spin $$S = 3{\text{/}}2$$ , which lead to giant changes in photoluminescence...  相似文献   

7.
8.
9.
We determine the sensitivity to neutrino oscillation parameters from a study of atmospheric neutrinos in a magnetised detector such as the ICAL at the proposed India-based Neutrino Observatory. In such a detector, which can separately count \(\nu _\mu \) and \(\overline{\nu }_\mu \)-induced events, the relatively smaller (about 5%) uncertainties on the neutrino–antineutrino flux ratios translate to a constraint in the \(\chi ^2\) analysis that results in a significant improvement in the precision with which neutrino oscillation parameters such as \(\sin ^2\theta _{23}\) can be determined. Such an effect is unique to all magnetisable detectors and constitutes a great advantage in determining neutrino oscillation parameters using such detectors. Such a study has been performed for the first time here. Along with an increase in the kinematic range compared to earlier analyses, this results in sensitivities to oscillation parameters in the 2–3 sector that are comparable to or better than those from accelerator experiments where the fluxes are significantly higher. For example, the \(1\sigma \) precisions on \(\sin ^2\theta _{23}\) and \(|\Delta {m^2_{32(31)}}|\) achievable for 500 kton year exposure of ICAL are \({\sim }9\) and \({\sim }2.5\)%, respectively, for both normal and inverted hierarchies. The mass hierarchy sensitivity achievable with this combination when the true hierarchy is normal (inverted) for the same exposure is \(\Delta \chi ^2\approx 8.5\) (\(\Delta \chi ^2\approx 9.5\)).  相似文献   

10.
A general strategy of Al–O–Al structure in various aluminosilicate was evaluated by combining triple-quantum magic angle spinning (3QMAS) and double-quantum homo-nuclear correlation under magic angle spinning (DQMAS) solid-state nuclear magnetic resonance (NMR) measurements with the aid of high magnetic field NMR (800 MHz for 1H Larmor frequency). The results show that in many cases the direct detection of Al–O–Al sites in aluminosilicate crystals and glasses is possible; hence the extent of aluminum avoidance can be directly elucidated. Specifically, experimental evidence of Al–O–Al linkages in several aluminosilicate materials with Si/Al >1 was straightforwardly confirmed; and the existence of Al–O–Al is considered to have little correlation with the Si/Al ratio, but it may be strongly related to the cation and local structural arrangement. In addition, the presence of tri-clusters of (Si, Al)O4-tetrahedra in aluminosilicate framework was proposed, which was thought to act as nuclei for formation and incorporation of cations to achieve charge neutrality.  相似文献   

11.
The solutions of equations characterizing the dynamics of charged particles in electromagnetic Penning–Malmberg traps with a rotating transverse electric field are presented and analyzed. The equations of motion are transformed in a way that makes it possible to distinguish between the motions of magnetron and cyclotron particles, reduce the system of equations to a stationary one, and conclude that asymptotically Lyapunov stable solutions of these equations are lacking in a certain parameter interval. This allows one to optimize the confinement of charged particles in such traps.  相似文献   

12.
The scattering of a fermion in the background of a sign potential is considered with a general mixing of vector and scalar Lorentz structures with the scalar coupling stronger than or equal to the vector coupling under the Sturm–Liouville perspective. When the vector coupling and the scalar coupling have different magnitudes, an isolated solution shows that the fermion under a strong potential can be trapped in a highly localized region without manifestation of Klein’s paradox. It is also shown that the lonely bound-state solution disappears asymptotically as one approaches the conditions for the realization of spin and pseudospin symmetries.  相似文献   

13.
14.
The current early stage in the investigation of the stability of the Kerr metric is characterized by the study of appropriate model problems. Particularly interesting is the problem of the stability of the solutions of the Klein–Gordon equation, describing the propagation of a scalar field of mass $\mu $ in the background of a rotating black hole. Rigorous results prove the stability of the reduced, by separation in the azimuth angle in Boyer–Lindquist coordinates, field for sufficiently large masses. Some, but not all, numerical investigations find instability of the reduced field for rotational parameters $a$ extremely close to $1$ . Among others, the paper derives a model problem for the equation which supports the instability of the field down to $a/M \approx 0.97$ .  相似文献   

15.
Direct initiation and propagation of detonation through a cryogenic two-phase flow constituted by liquid oxygen droplets in gaseous hydrogen at 100 K are experimentally investigated. The influence of droplet size distribution is characterized in a cryogenic gaseous helium and liquid oxygen two-phase flow. Droplet sizing and detonation experiments are conducted by varying different parameters: distance from the injector, helium and hydrogen mass flow rates, global equivalence ratio and addition of gaseous nitrogen. Droplet size distributions reveal quick vaporization of the smallest droplets of the cryogenic jet. Results in terms of wave velocity, pressure, and detonation cells show that a detonation wave can be directly initiated, with a propagation wave velocity of 20% higher than the Chapman–Jouguet value. Cell size measurements show that the mixture sensitivity is not affected by the presence of droplets. Addition of gaseous nitrogen reduces only slightly the peak pressure, but the detonation velocity is reduced by about 30%.  相似文献   

16.
Veinger  A. I.  Zabrodskii  A. G.  Lahderanta  E.  Semenikhin  P. V. 《JETP Letters》2022,115(11):685-690
JETP Letters - The ferromagnetic properties of Si:P in the region of a concentration insulator–metal phase transition at liquid helium temperatures have been detected and studied. To...  相似文献   

17.
It is shown that strong coupling of Bose–Einstein condensates to an optical cavity can be realized experimentally. With an additional driven microwave field, we show that a highly nonlinear coupling among atoms in a Bose–Einstein condensate can be induced with the assistance of the cavity mode. With such interaction, we can investigate the generation of many body entangled states. In particularly, we show that multipartite entangled GHZ states can be obtained in such architecture with current available techniques.  相似文献   

18.
A physico-mathematical model composed of a single equation that consistently describes nonlinear focused ultrasound, bubble oscillations, and temperature fluctuations is theoretically proposed for microbubble-enhanced medical applications. The Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation that has been widely used as a simplified model for nonlinear propagation of focused ultrasound in pure liquid is extended to that in liquid containing many spherical microbubbles, by applying the method of multiple scales to the volumetric averaged basic equations for bubbly liquids. As a result, for two-dimensional and three-dimensional cases, KZK equations composed of the linear combination of nonlinear, dissipation, dispersion, and focusing terms are derived. Especially, the dissipation term depends on three factors, i.e., interfacial liquid viscosity, liquid compressibility, and thermal conductivity of gas inside bubbles; the thermal conduction is evaluated by using four types of temperature gradient models. Finally, we numerically solve the derived KZK equation and show a moderate temperature rise appropriate to medical applications.  相似文献   

19.
D. Kulikov§  M. Hou 《哲学杂志》2013,93(2):141-172
The properties of trapping centres in – as grown – Tl4GaIn3S8 layered single crystals were investigated in the temperature range of 10–300 K using thermoluminescence (TL) measurements. TL curve was analysed to characterize the defects responsible for the observed peaks. Thermal activation energies of the trapping centres were determined using various methods: curve fitting, initial rise and peak shape methods. The results indicated that the peak observed in the low-temperature region composed of many overlapped peaks corresponding to distributed trapping centres in the crystal structure. The apparent thermal energies of the distributed traps were observed to be shifted from ~12 to ~125 meV by increasing the illumination temperature from 10 to 36 K. The analysis revealed that the first-order kinetics (slow retrapping) obeys for deeper level located at 292 meV.  相似文献   

20.
We present an asymptotic algorithm to solve a problem of wave propagation in a thin bi-material strip with an array of cracks situated at the interface between two materials. For small frequencies we construct an asymptotic solution which takes into account the singular behavior near the crack tips and the smooth nature of the oscillation far away from them. We construct the boundary layer solutions near the crack tips. The boundary layers are harmonic solutions in scaled domains. Dispersion equations are derived and solved within the frame of the asymptotic model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号