首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 670 毫秒
1.
《Nuclear Physics B》2005,727(3):537-563
We develop the BRST approach to Lagrangian formulation for massive higher integer spin fields on a flat space–time of arbitrary dimension. General procedure of gauge invariant Lagrangian construction describing the dynamics of massive bosonic field with any spin is given. No off-shell constraints on the fields (like tracelessness) and the gauge parameters are imposed. The procedure is based on construction of new representation for the closed algebra generated by the constraints defining an irreducible massive bosonic representation of the Poincaré group. We also construct Lagrangian describing propagation of all massive bosonic fields simultaneously. As an example of the general procedure, we derive the Lagrangians for spin-1, spin-2 and spin-3 fields containing total set of auxiliary fields and gauge symmetries of free massive bosonic higher spin field theory.  相似文献   

2.
We formulate a general gauge invariant Lagrangian construction describing the dynamics of massive higher spin fermionic fields in arbitrary dimensions. Treating the conditions determining the irreducible representations of Poincaré group with given spin as the operator constraints in auxiliary Fock space, we built the BRST charge for the model under consideration and find the gauge invariant equations of motion in terms of vectors and operators in the Fock space. It is shown that like in massless case [I.L. Buchbinder, V.A. Krykhtin, A. Pashnev, Nucl. Phys. B 711 (2005) 367, hep-th/0410215], the massive fermionic higher spin field models are the reducible gauge theories and the order of reducibility grows with the value of spin. In compare with all previous approaches, no off-shell constraints on the fields and the gauge parameters are imposed from the very beginning, all correct constraints emerge automatically as the consequences of the equations of motion. As an example, we derive a gauge invariant Lagrangian for massive spin 3/2 field.  相似文献   

3.
Using Poincaré parametrization of AdS space, we study totally symmetric arbitrary spin massless fields in AdS space of dimension greater than or equal to four. CFT adapted gauge invariant formulation for such fields is developed. Gauge symmetries are realized similarly to the ones of Stueckelberg formulation of massive fields. We demonstrate that the curvature and radial coordinate contributions to the gauge transformation and Lagrangian of the AdS fields can be expressed in terms of ladder operators. Realization of the global AdS symmetries in the conformal algebra basis is obtained. Modified de Donder gauge leading to simple gauge fixed Lagrangian is found. The modified de Donder gauge leads to decoupled equations of motion which can easily be solved in terms of the Bessel function. Interrelations between our approach to the massless AdS fields and the Stueckelberg approach to massive fields in flat space are discussed.  相似文献   

4.
《Nuclear Physics B》1988,301(1):132-156
Requiring the equivalence to the non-bosonized BRST invariant Caneschi-Schwimmer-Veneziano vertex (CSV vertex) for the Neveu-Schwarz sector of the superstring, we first construct the bosonized representation of the three-string CSV vertex for all fermionic fields and bosonic ghosts in the superstring. Taking the product of all these vertices and requiring the constraint equations for the bosonized operators as well as for the spin operator, we construst the bosonic representation of the three-superstring CSV vertex. Imposing the GSO projection, the resulting vertex is applicable to the coupling of any type of three-string states with arbitrary Bose sea level, including also the Ramond sector. The geometrical meaning of the constraint equation and the characterization of the CSV vertex as a transition operator are discussed.  相似文献   

5.
In this work we develop the BRST approach to Lagrangian construction for the massive integer higher spin fields in an arbitrary dimensional AdS space. The theory is formulated in terms of auxiliary Fock space. Closed nonlinear symmetry algebra of higher spin bosonic theory in AdS space is found and a method of deriving the BRST operator for such an algebra is proposed. A general procedure of Lagrangian construction, describing the dynamics of a bosonic field with any spin is given on the base of the BRST operator. No off-shell constraints on the fields and the gauge parameters are used from the very beginning. As an example of general procedure, we derive the Lagrangians for massive bosonic fields with spin 0, 1 and 2, containing the total set of auxiliary fields and gauge symmetries.  相似文献   

6.
We propose a systematic procedure for extracting gauge invariant and gauge fixed actions for various higher-spin gauge field theories from covariant bosonic open string field theory. By identifying minimal gauge invariant part for the original free string field theory action, we explicitly construct a class of covariantly gauge fixed actions with BRST and anti-BRST invariance. By expanding the actions with respect to the level N   of string states, the actions for various massive fields including higher-spin fields are systematically obtained. As illustrating examples, we explicitly investigate the level N?3N?3 part and obtain the consistent actions for massive graviton field, massive 3rd rank symmetric tensor field, or anti-symmetric field. We also investigate the tensionless limit of the actions and explicitly derive the gauge invariant and gauge fixed actions for general rank n symmetric and anti-symmetric tensor fields.  相似文献   

7.
We fulfill the detailed analysis of coupling the charged bosonic higher-spin fields to external constant electromagnetic field in first order in external field strength. Cubic interaction vertex of arbitrary massive and massless bosonic higher-spin fields with external field is found. Construction is based on deformation of free Lagrangian and free gauge transformations by terms linear in electromagnetic field strength. In massive case a formulation with Stueckelberg fields is used. We begin with the most general form of deformations for Lagrangian and gauge transformations, admissible by Lorentz covariance and gauge invariance and containing some number of arbitrary coefficients, and require the gauge invariance of the deformed theory in first order in strength. It yields the equations for the coefficients which are exactly solved. As a result, the complete interacting Lagrangian of arbitrary bosonic higher-spin fields with constant electromagnetic field in first order in electromagnetic strength is obtained. Causality of massive spin-2 and spin-3 fields propagation in the corresponding electromagnetic background is proved.  相似文献   

8.
Unfolded equations of motion for symmetric massive bosonic fields of any spin in Minkowski and (A)dS(A)dS spaces are presented. Manifestly gauge invariant action for a spin s?2s?2 massive field in any dimension is constructed in terms of gauge invariant curvatures.  相似文献   

9.
The covariant two-dimensional action principle that describes the dynamics of free superstrings in a Minkowski background is reviewed. Covariant gauge conditions are formulated, which simplify the equations of motion of the superspace coordinates to free equations. In this gauge there are bosonic and fermionic constraints whose generators give a supersymmetric generalization of the Virasoro algebra. As in certain supersymmetric field theories, closure of the algebra requires using the equations of motion. Covariant constrained bracket relations are obtained for the classical theory, but it is very difficult to extend them to quantum mechanical commutation relations. Interaction vertices satisfying supersymmetry and the necessary gauge conditions are constructed. They reduce in a special frame to ones found in earlier work in the light-cone gauge, and then can be interpreted quantum mechanically.  相似文献   

10.
11.
《Physics letters. [Part B]》1987,189(4):401-404
A recently proposed bosonic string action containing a term proportional to the world sheet is supersymmetrized in the light-cone gauge. We compute the one-loop contribution to the β function of the new coupling constant and find that the asymptotic freedom present in the bosonic case is not destroyed by the addition of the fermionic degrees of freedom.  相似文献   

12.
13.
《Nuclear Physics B》1988,301(1):26-68
Free massless fermionic fields of arbitrary spins, corresponding to fully symmetric tensor-spinor irreducible representations of the flat little group SO(d−2), are described in d-dimensional anti-de Sitter space in terms of differential forms. Appropriate linearized higher-spin curvature 2-forms are found. Explicitly gauge invariant higher-spin actions are constructed in terms of these linearized curvatures.  相似文献   

14.
15.
We consider in detail the most general cubic Lagrangian which describes an interaction between two identical higher spin fields in a triplet formulation with a scalar field, all fields having the same values of the mass. After performing the gauge fixing procedure we find that for the case of massive fields the gauge invariance does not guarantee the preservation of the correct number of propagating physical degrees of freedom. In order to get the correct number of degrees of freedom for the massive higher spin field one should impose some additional conditions on parameters of the vertex. Further independent constraints are provided by the causality analysis, indicating that the requirement of causality should be imposed in addition to the requirement of gauge invariance in order to have a consistent propagation of massive higher spin fields.  相似文献   

16.
We consider superstrings moving in the AdS 5 × S 5 space-time and find their Green-Schwarz action using the supercoset approach based on the supergroup PSU(2, 2|4). We describe several parametrizations of the relevant supercoset and present the action in different κ-symmetry gauges. In particular, we discuss a gauge where all the fermionic coordinates corresponding to the conformal (S) supercharges are gauged away and also a light-cone type gauge where half of the Q and S supercoordinates are gauged away. The resulting action contains terms that are quadratic and quartic in fermions. In the flat-space limit, it reduces to the standard light-cone Green-Schwarz action. We comment on the possibility of fixing the bosonic light-cone gauge and of reformulating the action in terms of two-dimensional Dirac spinors.  相似文献   

17.
18.
In this paper, we will incorporate the generalized uncertainty principle into field theories with Lifshitz scaling. We will first construct both bosonic and fermionic theories with Lifshitz scaling based on generalized uncertainty principle. After that we will incorporate the generalized uncertainty principle into a non-abelian gauge theory with Lifshitz scaling. We will observe that even though the action for this theory is non-local, it is invariant under local gauge transformations. We will also perform the stochastic quantization of this Lifshitz fermionic theory based generalized uncertainty principle.  相似文献   

19.
《Physics letters. [Part B]》1986,173(3):284-288
Gauge invariant and gauge fixed BRS invariant actions are constructed in arbitrary dimensions for free massless integer spin fields carrying mixed representations of the Lorentz group described by Young tableaux (2, 1, 1, …, 1)n. The complete ghost spectrum is deduced by demanding nilpotency of the BRS transformations and leads to a correct count of the on-shell degrees of freedom. Dimensional reduction is used to study the corresponding gauge invariant massive theory. On-shell consistency is then ensured by the fact that the masses arise via a “telescopic Higgs effect”.  相似文献   

20.
《Nuclear Physics B》1986,267(1):75-124
The theory of interacting heterotic strings is presented. Vertex operators are derived in both the bosonic and fermionic formulations of the theory and are shown to be consistent with gauge invariance, Lorentz invariance, and supersymmetry. Three- and four-point amplitudes for the scattering of massless string states are calculated and used to derive the low-energy field theory limit of the heterotic string. Divergences in string theories are discussed and it is shown that one-loop heterotic string amplitudes are finite and modular invariant only for gauge group E8×E8 or spin (32)/Z2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号