首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The decomposition of Li2S2O6·2 H2O, Na2S2O6·2 H2O, and MgS2O6·7 H2O has been studied using TG and DTG. Both sodium and lithium dithionates dehydrate in one step. Magnesium dithionate dehydrates in three separate steps. All three of the dithionates undergo further decomposition and lose sulfur dioxide to give stable sulfates. Kinetic parameters are presented for these reactions.  相似文献   

2.
Electron paramagnetic resonance (EPR) studies of X-irradiated lithium dithionate, Li(2)S(2)O(6) x 2H(2)O, doped with Ni and Rh have shown that these impurities enhance the yield of radicals formed by X-irradiation at room temperature. The signal in the doped samples, measured peak-to-peak of the single EPR derivative line attributed to the SO(3)(-) anion was about 3-4 times that of the pure lithium dithionate and more than 10 times stronger than the alanine signal. These impurities also shortened the spin-lattice relaxation time, T(1), which gives the possibility to measure the doped samples at a higher microwave power. This implies that sensitivity could be further enhanced in the already sensitive EPR dosimeter material lithium dithionate.  相似文献   

3.
We report an easy access to the salts of the LiC(BMe)11- anion, which greatly simplifies the synthesis of compounds carrying the -C(BMe)11- substituent, including the title anions. The previously recognized and puzzling spontaneous oligomerization of the solid lithium salts CH2=CH(CH2)(n-2)C(BMe)11- Li+ upon storage under ambient conditions is now shown to proceed by a radical mechanism, with the "naked" Li+ cation acting as a catalyst. The degree of polymerization is higher in solution, especially when azoisobutyronitrile (AIBN) is used as initiator (up to approximately 50). Initiation by the thermal decomposition of AIBN is also catalyzed by naked Li+, and this initiator is effective at room temperature. Di-tert-butyl peroxide and UV irradiation can also be used. The observation of Li+ catalysis agrees with a prior prediction from ab initio calculations, according to which Li+ complexation of ethylene strongly lowers the activation energy for methyl radical addition. The results bear on the current discussion of the possible sensitivity of radical clocks to their molecular environment and suggest that naked Li+ will catalyze the radical polymerization of simple terminal alkenes.  相似文献   

4.
Monte Carlo simulations were carried out to calculate optimum design parameters of an accelerator based Beam Shaping Assembly (BSA) for Boron Neutron Capture Therapy (BNCT) of Brain Cancer setup. Epithermal beam of neutrons were obtained through moderation fast neutrons from 7Li(p,n) reaction in a high density polyethylene moderator and a graphite reflector. The dimensions of the moderator and the reflector were optimized through optimization of epithermal/fast neutron intensity ratio as a function of geometric parameters of the setup. Results of our calculation showed the capability of our setup to treat the tumor within 4 cm of the head surface. The calculated Peak Therapeutic Ratio for the setup was found to be 2.15. With further improvement in the polyethylene moderator design and brain phantom irradiation-arrangement, the setup capabilities can be improved to reach further deep-seated tumor.  相似文献   

5.
Local environments and lithium ion dynamics in the binary lithium silicides Li(15)Si(4), Li(13)Si(4), and Li(7)Si(3) have been characterized by detailed variable temperature static and magic-angle spinning (MAS) NMR spectroscopic experiments. In the (6)Li MAS-NMR spectra, individual lithium sites are generally well-resolved at temperatures below 200 K, whereas at higher temperatures partial or complete site averaging is observed on the ms timescale. The NMR spectra also serve to monitor the phase transitions occurring in Li(7)Si(3) and Li(13)Si(4) at 235 K and 146 K, respectively. The observed lithium isotropic shift ranges of up to approximately 50 ppm indicate a significant amount of electronic charge stored on the lithium species, consistent with the expectation of the extended Zintl-Klemm-Busmann concept for the electronic structure of these materials. The (29)Si MAS-NMR spectra obtained on isotopically enriched samples, aided by double-quantum spectroscopy, are well suited for differentiating between the individual types of silicon sites within the silicon frameworks, and in Li(13)Si(4) their identification aids in the assignment of individual lithium sites via(29)Si{(7)Li} cross-polarization/heteronuclear correlation NMR. Variable temperature static (7)Li NMR spectra reveal motional narrowing effects, illustrating high lithium ionic mobilities in all of these compounds. Differences in the mobilities of individual lithium sites can be resolved by temperature dependent (6)Li MAS-NMR as well as (6)Li{(7)Li} rotational echo double resonance (REDOR) spectroscopy. For the compound Li(15)Si(4) the lithium mobility appears to be strongly geometrically restricted, which may result in a significant impediment for the use of Li-Si anodes for high-performance batteries. A comparison of all the (6)Li and (7)Li NMR spectroscopic data obtained for the three different lithium silicides and of Li(12)Si(7) previously studied suggests that lithium ions in the vicinity of silicon clusters or dimers have generally higher mobilities than those interacting with monomeric silicon atoms.  相似文献   

6.
Bonner sphere spectrometer with TLDs pairs has been utilized to measure the neutron spectrum 100 cm from isocenter of a 18 MV LINAC, simultaneously the ambient dose equivalent due to neutrons and photons was measured in the control room area with neutron and gamma-ray area monitors. Measurements were carried out when the LINAC was delivering a dose of 600 MU at the isocentre that was located at 5 cm depth of a head phantom. Undesired neutron field in the treatment room produce activation reactions with nuclei in different materials of LINAC, couch, air, and phantom. To determine the dose due to decay of activation nuclei the ambient dose due to gamma-rays was measured inside the treatment room immediately after dose was delivered. Measured spectrum has two peaks, one between 0.1–1 MeV and other in the thermal region, the ambient dose equivalent in the control room are 3.1 and 0.93 μSv h−1 for photons and neutrons, respectively. In the treatment room the ambient dose equivalent due to photons produced during decay of activation nuclei varies from 6 to 26.1 μSv h−1.  相似文献   

7.
7Li magic angle spinning solid-state nuclear magnetic resonance is applied to investigate the lithium local environment and lithium ion mobility in tetragonal anatase TiO(2) and orthorhombic lithium titanate Li(0.6)TiO(2). Upon lithium insertion, an increasing fraction of the material changes its crystallographic structure from anatase TiO(2) to lithium titanate Li(0.6)TiO(2). Phase separation occurs, and as a result, the Li-rich lithium titanate phase is coexisting with the Li-poor TiO(2) phase containing only small Li amounts approximately equal to 0.01. In both the anatase and the lithium titanate lattice, Li is found to be hopping over the available sites with activation energies of 0.2 and 0.09 eV, respectively. This leads to rapid microscopic diffusion rates at room temperature (D(micr) = 4.7 x 10(-12) cm(2)s(-1) in anatase and D(micr) = 1.3 x 10(-11) cm(2)s(-1) in lithium titanate). However, macroscopic intercalation data show activation energies of approximately 0.5 eV and smaller diffusion coefficients. We suggest that the diffusion through the phase boundary is determining the activation energy of the overall diffusion and the overall diffusion rate itself. The chemical shift of lithium in anatase is independent of temperature up to approximately 250 K but decreases at higher temperatures, reflecting a change in the 3d conduction electron densities. The Li mobility becomes prominent from this same temperature showing that such electronic effects possibly facilitate the mobility.  相似文献   

8.
New materials for electron spin resonance (ESR) dosimetry have been investigated with the aim to find systems more sensitive than L-alanine accepted as a standard for high dose determinations. Among the investigated systems ammonium tartrate, 2-methylalanine, salts of formic acids and dithionates have been found to be more sensitive than alanine by a factor 2-10. The lower limit applies to tissue equivalent materials, while much higher sensitivities were obtained with formates and dithionates containing heavier atoms. The increased sensitivity was mainly attributed to suitable ESR properties of the room temperature stable radicals as regards spectral shape (narrow lines, little or no hyperfine structure) and microwave saturation properties (short relaxation times). The radical structures have when necessary been clarified by ENDOR spectroscopy, while the saturation properties have been screened by pulsed ESR measurements.  相似文献   

9.
The non-destructive determination of lithium was performed by using a Cerenkov counter for the detection of the 13 MeV (max) β-particles from the 0.84 sec8Li produced by the reaction7Li(n,γ)8Li. Under optimal conditions for a favorable signal-to-noise ratio, a count rate of about 35 cps/μg lithium at the beginning of the measurement was obtained, with a background of 4.5 cps and a working range of 3–400 μg lithium. The interference of other elements was studied. Several lithium-containing minerals and a sample of Dead Sea water were analyzed. The isotopic composition of lithium in aqueous solutions was determined by the simultaneous measurement of the neutrons produced by the reactions6Li(n,α)t and18O(t,α)17N, and the β-particles emitted by8Li.  相似文献   

10.
Journal of Radioanalytical and Nuclear Chemistry - Effective separation of lithium isotopes (6Li and 7Li) is a significant challenge in developing clean nuclear energy. In this work, 7Li was...  相似文献   

11.
In this study, both experimental ionic conductivity measurements and the first-principles simulations are employed to investigate the Li(+) ionic diffusion properties in lithium-based imides (Li(2)NH, Li(2)Mg(NH)(2) and Li(2)Ca(NH)(2)) and lithium amide (LiNH(2)). The experimental results show that Li(+) ions present superionic conductivity in Li(2)NH (2.54 × 10(-4) S cm(-1)) and moderate ionic conductivity in Li(2)Ca(NH)(2) (6.40 × 10(-6) S cm(-1)) at room temperature; while conduction of Li(+) ions is hardly detectable in Li(2)Mg(NH)(2) and LiNH(2) at room temperature. The simulation results indicate that Li(+) ion diffusion in Li(2)NH may be mediated by Frenkel pair defects or charged vacancies, and the diffusion pathway is more likely via a series of intermediate jumps between octahedral and tetrahedral sites along the [001] direction. The calculated activation energy and pre-exponential factor for Li(+) ion conduction in Li(2)NH are well comparable with the experimentally determined values, showing the consistency of experimental and theoretical investigations. The calculation of the defect formation energy in LiNH(2) reveals that Li defects are difficult to create to mediate the Li(+) ion diffusion, resulting in the poor Li(+) ion conduction in LiNH(2) at room temperature.  相似文献   

12.
The crystal structures of several oxides of the La(2/3)Li(x)Ti(1-x)Al(x)O(3) system have been studied by selected-area electron diffraction, high-resolution transmission electron microscopy, and powder neutron diffraction, and their lithium conductivity has been by complex impedance spectroscopy. The compounds have a perovskite-related structure with a unit cell radical2 a(p)x2 a(p)x radical2 a(p) (a(p)=perovskite lattice parameter) due to the tilting of the (Ti/Al)O(6) octahedra and the ordering of lanthanum and lithium ions and vacancies along the 2 a(p) axis. The Li(+) ions present a distorted square-planar coordination and are located in interstitial positions of the structure, which could explain the very high ionic conductivity of this type of material. The lithium conductivity depends on the oxide composition and its crystal microstructure, which varies with the thermal treatment of the sample. The microstructure of these titanates is complex due to formation of domains of ordering and other defects such as strains and compositional fluctuations.  相似文献   

13.
Considering the advantages of boron neutron capture therapy (BNCT) in treating prostate cancer, the amount of dose delivered to tumour and healthy tissues must be determined. Therefore, in this study, Monte Carlo analyses were performed to evaluate physical doses of adjacent healthy tissues and prostate tumours located at different depths of reference phantom developed by International Commission on Radiological Protection. According to the results, when prostate depth decreases, the amount of physical dose in tumour increases but the physical doses of healthy organs around the tumour remain constant. As expected, lithium filter decreases the damages to normal tissues. The estimations of physical dose, dose uniformity and dose distribution suggested that using BNCT with a filtered neutron beam could be applicable for prostates locate at the depths less than 7 cm from the body surface, which occurs in 5 % of all subjects.  相似文献   

14.
The 6Li,15N coupling constants of lithium amide dimers and their mixed complexes with n-butyllithium, formed from five different chiral amines derived from (S)-[15N]phenylalanine, were determined in diethyl ether (Et2O), tetrahydrofuran (THF) and toluene. Results of NMR spectroscopy studies of these complexes show a clear difference in 6Li,15N coupling constants between di-, tri- and tetracoordinated lithium atoms. The lithium amide dimers with a chelating ether group exhibit 6Li,15N coupling constants of approximately 3.8 and approximately 5.5 Hz for the tetracoordinated and tricoordinated lithium atoms, respectively. The lithium amide dimers with a chelating thioether group show distinctly larger 6Li,15N coupling constants of approximately 4.4 Hz for the tetracoordinated lithium atoms, and the tricoordinated lithium atoms have smaller 6Li,15N coupling constants, approximately 4.9 Hz, than their ether analogues. In diethyl ether and tetrahydrofuran, mixed dimeric complexes between the lithium amides and n-butyllithium are formed. The tetracoordinated lithium atoms of these complexes have 6Li,15N coupling constants of approximately 4.0 Hz, and the 6Li,15N coupling constants of the tricoordinated lithium atoms differ somewhat, depending on whether the chelating group is an ether or a thioether; approximately 5.1 and approximately 4.6 Hz, respectively. In toluene, mixed trimeric complexes are formed from two lithium amide moieties and one n-butyllithium. In these trimers, two lithium atoms are tricoordinated with 6Li,15N coupling constants of approximately 4.6 Hz and one lithium is dicoordinated with 6Li,15N coupling constants of approximately 6.5 Hz.  相似文献   

15.
Two mechanisms of doping Li(3)NbO(4), which has an ordered, rock salt superstructure, have been established. In the "stoichiometric mechanism", the overall cation-to-anion ratio is maintained at 1:1 by means of the substitution 3Li(+) + Nb(5+) --> 4Ni(2+). In the "vacancy mechanism", Li(+) ion vacancies are created by means of the substitution 2Li(+) --> Ni(2+). Solid solution ranges have been determined for both mechanisms and a partial phase diagram constructed for the stoichiometric join. On the vacancy join, the substitution mechanism has been confirmed by powder neutron diffraction; associated with lithium vacancy creation, a dramatic increase in Li(+) ion conductivity occurs with increasing Ni content, reaching a value of 5 x 10(-4) Omega(-1) cm(-1) at 300 degrees C for composition x= 0.1 in the formula Li(3-2x)Ni(x)NbO(4). This is the first example of high Li(+) ion conductivity in complex oxides with rock salt-related structures.  相似文献   

16.
The aim of this study is to determine the optimal backscatter thickness and lateral phantom dimension beyond the irradiated volume for the dosimetric verification with radiographic film when applying large field sizes. Polystyrene and Virtual Water™ phantoms were used to study the influence of the phantom backscatter thickness. EDR2 and XV films were used in 6 and 18 MV photon beams.The results show 11.4% and 6.4% over-response of the XV2 film when compared to the ion chamber for 6 MV 30×30 and 10×10 cm2 field sizes, respectively, when the phantom backscatter thickness is 5 cm. For the same setup, measurements with EDR2 films indicate 8.5% and 1.7% over-response. The XV2 film response in the polystyrene phantom is about 2.0% higher than in the Virtual Water™ phantom for the 6 MV beam and 20 cm backscatter thickness. Similar results were obtained for EDR2 film.In the lateral scatter study, film response was nearly constant within 5 cm of lateral thickness and it increases when lateral thickness increases due to more multiple scatter of low energy photons. The backscatter thickness of the phantom should be kept below 7 cm for the accuracy of the film dosimetry. The lateral extension of the phantom should not be more than 5 cm from the field boundary in case of large irradiated volumes.  相似文献   

17.
Lithium formate electron paramagnetic resonance (EPR) dosimeters were irradiated using 60Co gamma-rays or fast neutrons to doses ranging from 5 to 20 Gy and investigated by EPR spectroscopy. Using a polynomial fitting procedure in order to accurately analyze peak-to-peak line widths of first derivative EPR spectra, dosimeters irradiated with neutrons had on average 4.4+/-0.9% broader EPR resonance lines than gamma-irradiated dosimeters. The increase in line width was slightly asymmetrical. Computer simulated first derivative polycrystalline EPR spectra of a *CO2- radical gave very good reconstructions of experimental spectra of irradiated dosimeters. The spectrum simulations could then be used as a tool to investigate the line broadening observed following neutron irradiation. It was shown that an increase in the simulated Lorentzian line width could explain both the observed line broadening and the asymmetrical effect. The ratio of the peak-to-peak amplitude of first derivative EPR spectra obtained at two different microwave powers (20 and 0.5 mW) was 7.8+/-1.2% higher for dosimeters irradiated with neutrons. The dependence of the spectrum amplitude on the microwave power was extensively investigated by fitting observations to an analytical non-linear model incorporating, among others, the spin-lattice (T1) and spin-spin (T2) relaxation times as fitting parameters. Neutron irradiation resulted in a reduction in T(2) in comparison with gamma-irradiation, while a smaller difference in T1 was found. The effects observed indicate increased local radical density following irradiation using high linear energy transfer (LET) neutrons as compared to low LET gamma-irradiation. A fingerprint of the LET may thus be found either by an analysis of the line width or of the dependence of the spectrum amplitude on the microwave power. Lithium formate is therefore a promising material for EPR dosimetry of high LET radiation.  相似文献   

18.
Phantoms for the calibration of local bone mineral densities by micro-computed tomography (microCT), consisting of lithium tetraborate (Li(2)B(4)O(7)) with increasing concentrations of hydroxyapatite [HAp, Ca(10)(PO(4))6(OH)2] have been prepared and characterized for homogeneity. Large-scale homogeneity and concentration of HAp in the phantom materials was determined using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), while homogeneity on the micrometer scale was assessed through microCT. A series of standards was prepared by fusion of pure HAp with Li(2)B(4)O(7) in a concentration range between 0.12 and 0.74 g cm(-3). Furthermore, pressed and sintered pellets of pure HAp were prepared to extend the calibration range towards densities of up to 3.05 g cm(-3). A linear calibration curve was constructed using all individual standard materials and the slope of the curve was in good agreement with calculated absorption coefficients at the effective energy of the microCT scanner.  相似文献   

19.
The crystal structure of Li7[Mn(V)N4] was re-determined. Isolated tetrahedral [Mn(V)N4](7-) ions are arranged with lithium cations to form a superstructure of the CaF2 anti-type (P4bar3n, No. 218, a = 956.0(1) pm, Z = 8). According to measurements of the magnetic susceptibility, the manganese (tetrahedral coordination) is in a d(2) S = 1 state. Thermal treatment of Li7[Mn(V)N4] under argon in the presence of elemental lithium at various temperatures leads to Li24[Mn(III)N3]3N2, Li5[(Li1-xMnx)N]3, and Li2[(Li1-xMn(I)x)N], respectively. Li24[Mn(III)N3]3N2 (P3bar1c, No. 163, a = 582.58(6) pm, c = 1784.1(3) pm, Z = 4/3) crystallizes in a trigonal unit cell, containing slightly, but significantly nonplanar trigonal [MnN3](6-) units with C3v symmetry. Measurements of the magnetic susceptibility reveal a d(4) S = 1 spin-state for the manganese (trigonal coordination). Nonrelativistic spin-polarized DFT calculations with different molecular models lead to the conclusion that restrictions in the Li-N substructure are responsible for the distortion from planarity of the [Mn(III)N3](6-). Li5[(Li1-xMnx)N]3 (x = 0.59(1), P6bar2m, No. 189, a = 635.9(3) pm, c = 381.7(2) pm, Z = 1) is an isotype of Li5[(Li1-xNix)N]3 with manganese in an average oxidation state of about +1.6. The crystal structure is a defect variant of the alpha-Li3N structure type with the transition metal in linear coordination by nitrogen. Li2[(Li1-xMn(I)x)N] (x = 0.67(1), P6/mmm, No. 191, a = 371.25(4) pm, c = 382.12(6) pm, Z = 1) crystallizes in the alpha-Li3N = Li2[LiN] structure with partial substitution of the linearly nitrogen-coordinated Li-species by manganese(I). Measurements of the magnetic susceptibility are consistent with manganese (linear coordination) in a low-spin d(6) S = 1 state.  相似文献   

20.
7Li and 13C solid-state MAS NMR spectra of three lithium cuprates with known X-ray structures--lithium([12]crown-4)2 dimethyl and diphenyl cuprate (1,2) and lithium(thf)4-[tris(trimethylsilyl) methyl]2 cuprate (3)--have been measured and analysed with respect to the quadrupolar coupling constants of lithium-7, chi(7Li), and the asymmetry parameters of the quadrupolar interactions, eta(7Li), as well as the 6, 7Li and 13C chemical shifts. The chi(7Li) values of 23, 30, and 18 kHz for 1, 2 and 3, respectively, are in line with the high symmetry around the lithium nucleus in the solvent-separated structures and may be used as reference data for this structural motif. Calculations based on charges derived from ab initio 6-31 G* HF computations using the point charge model (PCM) and the program GAMESS support the experimental findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号