首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Male KB  Luong JH 《Electrophoresis》2003,24(6):1016-1024
An array of eight interdigitated microband gold electrodes (IDEs) has been developed together with electrophoretic separation for analysis of chlorinated hydroquinones (ClHQs) and benzoquinones (ClBQs). The IDE chip positioned very close to the separation capillary outlet served as an amplification/detection system without the requirement for frequent "capillary-electrode" alignment. ClHQs, electrophoretically migrating to the IDE surface, were oxidized at +1.1 V by seven electrodes of the array and then detected by the remaining electrode, poised at -0.1 V. Conversely, ClBQs were detected at +1.1 V by the detecting electrode after having been reduced at the 7 adjacent electrodes poised at -0.1 V. There was an amplification effect on both the detecting electrode as well as the adjacent electrodes because of the recycle between ClHQs and ClBQs. The detecting "amplification" current response was dependent on the potentials applied, the position of the detecting electrode on the array, the number of adjacent electrodes being used for recycling and the distance between the oxidative and reductive electrodes. Micellar electrokinetic chromatography (MEKC) separation of the analytes was achieved using 30 mM sodium dodecyl sulfate (SDS) with a detection limit in the range of 2-20 micro M. In addition to a facile "capillary-electrode" alignment, the important aspect described here was the capability of detecting through recycling a reduced compound (in the case of ClHQs) at a negative potential to circumvent fouling and electroactive interferences. An appealing feature was also the concurrent oxidation/reduction detection for each compound to ascertain peak assignment, as interfering compounds are less likely to exhibit the same oxidative/reductive characteristics and electrophoretic mobilities as the target analytes.  相似文献   

2.
The racemates of several chiral thiobarbiturates were separated by using different cyclodextrins in capillary electrophoresis (CE). Six neutral and negatively charged cyclodextrins 1 (CDs) were employed as chiral separators whereof five led to successful separation of enantiomeric thiobarbiturate pairs. The CDs used were the native alpha-CD, beta-CD, gamma-CD, and heptakis-(2,6-di-O-methyl)-beta-cyclodextrin (HDM) as well as heptakis-(2,3-di-O-methyl-6-sulfato)-beta-cyclodextrin (HDMS) and heptakis-(2,3-di-O-acetyl-6-sulfato)-beta-CD (HDAS). Five of the six chiral thiobarbiturates studied could be resolved at a basic pH value of 9.4 and a phosphate buffer concentration of 100 mM in a fused-silica capillary. Structurally related substances showed a similar behavior in separation: 1 and 2 bearing the center of chirality in the side chain at C5 can be best separated using gamma-CD, the N-alkyl-substituted compounds 3 and 4 as well as the N/S-dialkyl-substituted compound 5 could be resolved with HDM. Using the neutral CDs, the migration times were relatively small (< 11 min). 3 and 4 could be also resolved by means of the negatively charged HDMS. In the latter case, the migration time is twice as long as with HDM.  相似文献   

3.
This review focuses on some recent advances in realizing microfabricated capillary array electrophoresis (microCAE). In particular, the development of a novel rotary scanning confocal fluorescence detector has facilitated the high-speed collection of sequencing and genotyping data from radially formatted microCAE devices. The concomitant development of a convenient energy-transfer cassette labeling chemistry allows sensitive multicolor labeling of any DNA genotyping or sequencing analyte. High-performance hereditary haemochromatosis and short tandem repeat genotyping assays are demonstrated on these devices along with rapid mitochondrial DNA sequence polymorphism analysis. Progress in supporting technology such as robotic fluid dispensing and batched data analysis is also presented. The ultimate goal is to develop a parallel analysis platform capable of integrated sample preparation and automated electrophoretic analysis with a throughput 10-100 times that of current technology.  相似文献   

4.
Chiral separations of three hydroxyflavanone aglycones, including 2'-, 3'-, and 4'-hydroxyflavanone, in capillary zone electrophoresis (CZE) using randomly sulfate-substituted beta-cyclodextrin (S-beta-CD) or dual cyclodextrin (CD) systems consisting of S-beta-CD and a neutral CD at low pH were investigated. The results indicate that S-beta-CD is an excellent chiral selector for enantioseparation of 2'-hydroxyflavanone and is a good chiral selector for 3'-hydroxyflavanone. Depending on the concentration of S-beta-CD ranging from 2.0 to 0.75% (w/v), the enantioresolution values were 10.5-19.5 and 1.8-3.4 for 2'- and 3'-hydroxyflavanone, respectively. The enantiomers of 4'-hydroxyflavanone could be effectively separated with S-beta-CD at a concentration of 2.0% (w/v) within 20 min. The enantioselectivity and enantioresolution follow the order 2'-hydroxyflavanone>3'-hydroxyflavanone>4'-hydroxyflavanone. Alternatively, with the addition of sodium dodecyl sulfate (SDS) monomers at low concentrations in the electrophoretic system, enantioselectivity of these hydroxyflavanone aglycones could be enhanced with dual CD systems. In this case, SDS monomer acted as a complexing agent probably first with S-beta-CD and then subsequently with the analytes for increasing the effective electrophoretic mobility of the analytes towards the anode and as a selectivity controller for affecting the selectivity of hydroxyflavanones. Better enantioseparation between 2'-hydroxyflavanone and 3'-hydroxyflavanone could be achieved with a dual CD system consisting of S-beta-CD and gamma-CD than that with S-beta-CD and beta-CD. In addition, possible chiral recognition mechanisms of hydroxyflavanones are discussed.  相似文献   

5.
Chiral separations of fluorescamine-labeled amino acids are characterized and optimized on a microfabricated capillary electrophoresis (CE) device. A standard mixture of acidic and neutral amino acids is labeled with fluorescamine in less than 5 min and the hydroxypropyl-beta-cyclodextrin (HPbetaCD) concentration, temperature, and pH are optimized (15 mM HPbetaCD, 6 degrees C, pH < 9) to achieve high-quality and low background chiral separations in less than 200 s. All four stereoisomers formed in the labeling reaction of the chiral dye with the chiral amino acids are typically resolved. At pH > 9, isomerization of the dye chiral center is observed that occurs on the time scale of the chip separation. Typical limits of detection are approximately 50 nM. These results demonstrate the feasibility of combining fluorescamine labeling of amino acids with microfabricated CE devices to develop low-volume, high-sensitivity apparatus and methods for extraterrestrial exploration.  相似文献   

6.
Mohr S  Pilaj S  Schmid MG 《Electrophoresis》2012,33(11):1624-1630
In recent years, cathinone derivatives have entered the global drug market and caused serious social problems in many European countries. Modification of the basic structure of cathinone leads to a multitude of derivatives, including the most popular representative mephedrone. All those substances contain a stereogenic center and therefore two isoforms exist. As it is the case with many chiral active pharmaceutical ingredients, even the pharmacological effect of the enantiomers of those psychoactive compounds may differ. During this research, an easy-to-prepare chiral capillary zone electrophoresis method for the enantioseparation of a set of 19 cathinone derivatives was developed. Testing different types of cyclodextrin (CD), including native-β-CD, carboxymethyl-β-CD, 2-hydroxypropyl-β-CD, sulfated-β-CD, and native γ-CD, best results were obtained with the negatively charged sulfated-β-CD. The effect of the CD concentration, the temperature, and the addition of ACN to the BGE on the enantioseparation is shown by three model compounds. Under optimal conditions, using 20 mg/mL sulfated-β-CD in 50 mM ammonium acetate buffer pH?= 4.5 containing 10% v/v ACN at a cassette temperature of 40°C and with an applied voltage of 20 kV, all derivatives except methedrone were resolved in their enantiomers within 20 min.  相似文献   

7.
A capillary electrophoresis for the chiral separation of racemic methotrexate (rac-MTX) was developed and validated. The two enantiomers were separated by using fused-silica capillary and a running buffer containing phosphate and hydroxypropyl-β-cyclodextrin (HP-β-CD). Several parameters were studied, including concentration and pH of phosphate buffer, separation voltage, and type and concentration of CD. The quantitative ranges were 12.5-200.0 μM for each enantiomer. The intra- and inter-day relative standard deviations (R.S.D.) and relative errors (R.E.) (n=5) were all <5%. The detection limits were found to be about 4 μM (S/N=3, injection 5 s) at 280 nm. All recoveries were greater than 93%. This method was applied to the assay of l-MTX in pharmaceuticals.  相似文献   

8.
Cyclodextrin-modified capillary zone electrophoresis (CD-CZE) was applied successfully to the enantiomeric and isomeric separation of three herbicides (imazaquin, diclofop and imazamethabenz). Commercially available cyclodextrins were evaluated for separation of the enantiomers and isomers of the three herbicides having varied molecular structures. The enantiomers of imazaquin and diclofop, and the isomers of imazamethabenz could be resolved with a resolution of ≥1.5. The resolution was found to depend on pH of the run buffer, cyclodextrin type and cyclodextrin concentration. By employing mixed cyclodextrins in the running buffer, the three herbicides were simultaneously separated in a single run. In addition, rapid (less than 3 min) enantiomeric separation is demonstrated using imazaquin as a model herbicide. The reported capillary electrophoresis (CE) methods are simple, rapid, efficient and reproducible and our results demonstrate that CE provides a powerful analytical tool for enantiomeric and isomeric separation of herbicides.  相似文献   

9.
We report on the direct coupling of hydrodynamically flowing stream to a microchip capillary electrophoresis (CE) for continuous assays of liquid samples. The new interface relies on mounting the sample tubing onto a sharp inlet tip and allows rapid, convenient and reproducible electrokinetic loading from a continuously flowing stream directly into the narrow separation microchannel. The sharp inlet interface is characterized by its efficiency, stability and simplicity. The effect of the sample flow rate, applied voltages and other relevant variables, is described. It was found that the peak intensity is independent of the flow rate. The performance of the new interface is illustrated for on-line CE-electrochemical monitoring of phenolic and explosive compounds. Conditions simulating continuous long-term monitoring, led to a highly stable response for a 15 ppm 1,3,5-trinitrobenzene solution (RSD = 3.7%, n= 40). Such ability to continuously introduce flowing samples into micrometer channels makes 'lab-on-a-chip' devices highly compatible with real-life monitoring applications.  相似文献   

10.
Chiral separation method development is usually very time-consuming due to the diversity in chemical structures of pharmaceutical drug substances as well as the suitable separation conditions and the problem to choose the appropriate chiral selector. This paper shows capillary zone electrophoresis (CZE) which was developed for chiral separation of a basic compound - rivastigmine (RIV) using 30 cm × 50 μm i.d. polyacrylamide (PAA)-coated fused-silica capillary (effective length 20 cm), amine-modified phosphate buffer of pH 2.5 and sulfated-β-CD (S-β-CD) as chiral selector. Other selected native or derivatized cyclodextrins (CDs) were also tested: β-CD (5, 30 mM), carboxymethyl-β-CD (5, 30 mM), dimethyl-β-CD (15 mM), hydroxypropyl-β-CD (5, 30 mM), hydroxypropyl-α-CD (5, 30 mM) and hydroxypropyl-γ-CD (5, 30 mM). Complete enantiomeric separation of RIV was achieved at 20 kV, 18 °C and detection at 200 nm within 8 min with R.S.D. for the absolute migration time reproducibility of less than 2.1%. Rectilinear calibration range was 5.0-500.0 μM of each enantiomer (r = 0.9994-0.9995). The CZE method proposed was used for the control of chiral purity of pharmaceutically active S-RIV and for the analysis of Exelon caps preparation.  相似文献   

11.
Lin CE  Liao WS  Cheng HT  Kuo CM  Liu YC 《Electrophoresis》2005,26(20):3869-3877
In this study, enantioseparations of five phenothiazines, including promethazine, ethopropazine, trimeprazine, methotrimeprazine, and thioridazine, in CD-modified CZE using dual CD systems consisting of randomly sulfate-substituted CD (MI-S-beta-CD) and a neutral CD as chiral selectors in a citrate buffer (100 mM) at pH 3.0 were investigated. The results indicate that MI-S-beta-CD is an excellent chiral selector for enantioseparation of ethopropazine. The enantiomers of promethazine can also be baseline-resolved with MI-S-beta-CD at concentrations in the range of 0.5-1.0% w/v. On the other hand, thioridazine and trimeprazine interact strongly with neutral CDs. As a result, the enantioselectivity of these two phenothiazines is remarkably and synergistically enhanced with increasing the concentration of neutral CDs in the presence of MI-S-beta-CD and simultaneous enantioseparations of these phenothiazines, except for methotrimeprazine, could favorably be achieved with the use of dual CD systems. Moreover, by varying the concentration of beta-CD or gamma-CD at a fixed concentration of MI-S-beta-CD (0.75% w/v) reversal of the enantiomer migration order of promethazine occurred. This may be attributable to the opposite effects of charged and neutral CDs on the mobility of the enantiomers of promethazine.  相似文献   

12.
Nonaqueous capillary electrophoresis (NACE) equipped with amperometric detection has been developed for separation and detection of an 11-member model mixture of chlorinated phenolic compounds. With triacetyl-beta-cyclodextrin (TACD) as a novel selectivity selector, acetonitrile proved to be an excellent solvent for this water-insoluble cyclodextrin derivative. Resolution of the analytes was achieved by using an optimized acetonitrile medium consisting of 500 mM acetic acid, 10 mM sodium acetate, 12 mM TACD and 50 mM tetrabutylammonium perchlorate. Separation of analytes was attributed to differential electrostatic and/or inductive interactions of the analytes with the TACD/TBA+ complex and charged tetrabutylammonium phases. A simple end-column amperometric detector (Pt vs. Ag/AgCl, poised at +1.6 V) in conjunction with NACE was used to analyze chlorophenols. Amperometric detection of such target compounds in acetonitrile-based media offers high sensitivity and alleviates electrode fouling compared to aqueous buffers. The detection limits obtained, ranging from 30 nM to 500 nM, are 3-8-fold lower than those obtained with aqueous buffers.  相似文献   

13.
M T Bowser  R T Kennedy 《Electrophoresis》2001,22(17):3668-3676
Microdialysis sampling was coupled via a flow-gated interface on-line to capillary electrophoresis with laser-induced fluorescence (LIF) detection for in vivo monitoring of neuroactive amino acids and amines. In the instrument, analytes are derivatized precolumn with o-phthaldehyde and beta-mercaptoethanol to form fluorescent isoindole products. The instrument was improved over previous designs by incorporating a sheath-flow cuvette for reduced background in LIF detection which improved sensitivity by 15-fold. The methodology was improved by utilizing a voltage ramped injection which allowed generation of 500000 theoretical plates with 20 s separations. Resolution of the isoindole derivatives was further improved by addition of hydroxypropyl-modified beta-cyclodextrin to the electrophoresis buffer. The new instrumentation and methods allow resolution and detection of glutamate, gamma-aminobutyric acid, glycine, aspartate, serine, taurine, glutamine and dopamine (if levels are elevated) collected from in vivo sampling probes every 20 s. The technique is suited to continuous monitoring for dynamic measurements of these compounds in vivo.  相似文献   

14.
A high-density 384-lane microfabricated capillary array electrophoresis device is evaluated for high-throughput single-strand conformation polymorphism (SSCP) analysis. A delayed back bias direct electrokinetic injection scheme is used to provide better than 10-bp resolution with an 8.0-cm effective separation length. Separation of a HaeIII digest of PhiX174 yielded theoretical plate numbers of 4.0 x 10(6). Using 5% PDMA containing 10% glycerol and 15% urea, 21 single-nucleotide polymorphisms (SNPs) from HFE, MYL2, MYL3, and MYH7 genes associated with hereditary hemochromatosis (HHC) and hereditary hypertrophic cardiomyopathy (HCM) are discriminated at two running temperatures (25 degrees C and 40 degrees C), providing 100% sensitivity. The data in this study demonstrate that the 384-lane microCAE device provides the resolution and detection sensitivity required for SSCP analysis, showing its potential for ultrahigh-throughput mutation detection.  相似文献   

15.
Our efforts have been focused on developing a self-contained and transportable microfabricated electrophoresis (CE) system with integrated electrochemical detection (ED). The current prototype includes all necessary electrodes “on-chip” and utilizes miniaturized CE and ED supporting electronics custom designed for this purpose. State-of-the-art design/modeling tools and novel microfabrication procedures were used to create recessed platinum electrodes with complex geometries and the CE/ED device from two patterned ultra-flat glass substrates. The electrodes in the bottom substrate were formed by a self-aligned etch and deposition technique followed by a photolithographic lift-off process. The microchannels (20 μm deep×65 μm wide (average)) were chemically etched into the top substrate followed by thermal bonding to complete the microchip device. CE/ED experiments were performed using 0.02 M phosphate buffer (pH 6), an analyte/buffer solution (2.2 mM dopamine, 2.3 mM catechol) and varying separation voltages (0-500 V) with a custom electronics unit interfaced to a laptop computer for data acquisition. Detection limits (S/N=3) were found to be at the micromolar level and a linear detection response was observed up to millimolar concentrations for dopamine and catechol. The microchip CE/ED system injected 50 pl volumes of sample, which corresponded to mass detection limits on the order of 200 amol. For the first time, an integrated “on-chip” multi-electrode array CE/ED device was successfully designed, fabricated and tested. The majority of the electrodes (six out of eight) in the array were capable of detecting dopamine with the amplitude of the signal (i.e., peak heights) decreasing as the electrode distance from the channel exit increased.  相似文献   

16.
Johirul M  Shiddiky A  Kim RE  Shim YB 《Electrophoresis》2005,26(15):3043-3052
A microfluidic chip based on capillary electrophoresis coupled with a cellulose-single-stranded DNA (cellulose-ssDNA) modified electrode was used for the simultaneous analysis of dopamine (DA), norepinephrine (NE), 3,4-dihydroxy-L-phenylalanine (L-DOPA), 3,4-dihydroxyphenylacetic acid (DOPAC), and ascorbic acid (AA). The modification of the electrode improved the electrophoretic analysis performance by lowering the detection potential and enhancing the signal-to-noise characteristic without surface poisoning of the electrode. The sensitivity of the modified electrode was about 12 times higher than those of the bare ones. The test compounds were separated using a 62 mm long separation channel at the separation field strength of +200 V/cm within 220 s in a 10 mM phosphate buffer (pH 7.4). The most favorable potential for the amperometric detection was 0.7 V (vs. Ag/AgCl). A reproducible response (relative standard deviation of 1.3, 1.3, 2.1, 3.1, 3.4% for DA, NE, L-DOPA, DOPAC, and AA, respectively, for n = 9) for repetitive sample injections reflected the negligible electrode fouling at the cellulose-ssDNA modified electrode. Square-wave voltammetric analyses reflected the sensitivities of the modified electrode for DA, NE, L-DOPA, DOPAC, and AA which were 1.78, 0.82, 0.69, 2.45, and 1.23 nC/microM with detection limits of 0.032, 0.93, 1.13, 0.31, and 0.62 microM, respectively. The applicability of this microsystem to real sample analysis was demonstrated.  相似文献   

17.
A sensitive, simple and reproducible method was developed for preconcentration and determination of trimipramine (TPM) enantiomers in biological samples using electromembrane extraction combined with cyclodextrin‐modified capillary electrophoresis (CE). During the extraction, TPM enantiomers migrated from a 5 mL sample solution through a thin layer of 2‐nitrophenyl octyl ether NPOE immobilized in the pores of a hollow fiber, and into a 20 μL acidic aqueous acceptor phase presented inside the lumen of the fiber. A Box–Behnken design and the response surface methodology (RSM) were used for the optimization of different variables on extraction efficiency. Optimized extraction conditions were: NPOE as supported liquid membrane, inter‐electrode distance of 5 mm, stirring rate of 1000 rpm, 51 V potential difference, 34 min as the extraction time, acceptor phase pH 1.0 and donor phase pH 4.5. Then, the extract was analyzed using optimized cyclodextrin (CD)‐modified CE method for the separation of TPM enantiomers. Best results were achieved using 100 mM phosphate running buffer (pH 2.0) containing 10 mM α‐CD as the chiral selector, applied voltage of 18 kV and 20°C. The range of quantitation for both enantiomers was 20–500 ng/mL. The method was very reproducible so that intra‐ and interday RSDs (n=6) were <6%. The limits of quantitation and detection for both enantiomers were 20 and 7 ng/mL, respectively. Finally, this method was successfully applied to determine the concentration of TPM enantiomers in plasma and urine samples without any pre‐treatment.  相似文献   

18.
Chiral separation of local anaesthetics with capillary electrophoresis   总被引:1,自引:0,他引:1  
Summary A chiral capillary electrophoresis system for the highresolution separation of the enantiomers of the local anaesthetics mepivacaine, ropivacaine, bupivacaine and prilocaine is described. Triethanolamine was added to the background electrolyte to obtain a negative electroosmotic flow and hence higher resolutions. The interactions of the local anaesthetics and their chemical analogues with the chiral selector, dimethyl--cyclodextrin, were studied. From a model describing chiral capillary electrophoresis, the association equilibrium constants were determined by curve-fitting. The separation of mepivacaine, ropivacaine and bupivacaine was due to the different mobilities of the free analytes in solution, whereas the separation of a pair of enantiomers of a single analyte was due to differences between the association equilibrium constantsK 1 andK 2. Branching of the alkyl chain, which was situated close to the cavity in the inclusion complex, had strong effects on the chiral separation of the enantiomers.  相似文献   

19.
20.
The enantiomeric separations of several very hydrophobic dihydrofuroflavones were performed and optimized using cyclodextrin-modified micellar capillary electrophoresis. Overall, the greatest enantiomeric peak-to-peak separations for the greatest number of flavones were obtained with hydroxypropyl-gamma-cyclodextrin. The effects of cyclodextrin and sodium dodecyl sulfate concentration and pH were examined in order to optimize the separation conditions. The ratio of surfactant-to-cyclodextrin concentration affected the chiral discrimination of the system significantly, with increases in the derivatized cyclodextrin concentration generally enhancing resolution. Higher efficiencies were obtained with lower concentrations of surfactant and cyclodextrin, although enantioseparation optimization often required higher concentrations to be used. A highly acidic pH was necessary to effectively suppress the electroosmotic flow when operating in the reversed polarity mode. Experiments utilizing the normal polarity mode and higher pH produced no separations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号