首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a process X solution of a semilinear stochastic evolution equation in a Hilbert space. Assuming that X has an invariant measure ν, we investigate its regularity properties. Logarithmic derivatives of ν in certain directions, are shown to exist under appropriate conditions on the nonlinear term in the equation. A set of directions of differentiability for ν is explicitly described in terms of the coefficients of the equation. In some cases, logarithmic derivatives are represented as conditional expectations of random variables related to an appropriate stationary process. An application to a system of stochastic partial differential equations in one space variable is given  相似文献   

2.
The well-known theorem of T. Yamada and S. Watanabe asserts that (weak) existence and pathwise uniqueness of the solution of a stochastic equation implies the existence of a strong solution. This is the most powerful tool for proving that a stochastic equation possesses a strong solution. However, pathwise uniqueness is far from being a necessary condition for this. Even if the solution is not unique in law it is also of interest to ask for strong solutions. In the present note, we will discuss in more detail the connection between pathwise uniqueness and the existence of a strong solution. We will state a condition which is not only sufficient but also necessary for the existence of a strong solution.  相似文献   

3.
Summary We establish the existence and uniqueness of the solution to a multidimensional linear Skorohod stochastic differential equation with deterministic diffusion matrix, using the notions of Wick product andStransform. If the diffusion matrix is constant and has real eigenvalues, the solution is a stochastic process with moments of all orders, provided that the initial condition is differentiable up to a suitable order. The case of a diffusion matrix in the first Wiener chaos is discussed in the last section.Supported by the Deutsche Forschungsgemeninschaft/Heisenberg ProgrammSupported by the DGICYT grant PB 90-0452  相似文献   

4.
Systems of Wick stochastic differential equations are studied. Using an estimate on the Wick product we apply Picard iteration to prove a general existence and uniqueness theorem for systems of Wick stochastic differential equations. We also show the solution is stable with respect to perturbations of the noise. This result is used to show that the solution of a linear system of Wick stochastic differential equations driven by smoothed Brownian motion tends to the solution of the corresponding It equation as the smoothed process tends to Brownian motion  相似文献   

5.
    
Abstract. In this paper we prove the existence and uniqueness of strong solutions for the stochastic Navier—Stokes equation in bounded and unbounded domains. These solutions are stochastic analogs of the classical Lions—Prodi solutions to the deterministic Navier—Stokes equation. Local monotonicity of the nonlinearity is exploited to obtain the solutions in a given probability space and this significantly improves the earlier techniques for obtaining strong solutions, which depended on pathwise solutions to the Navier—Stokes martingale problem where the probability space is also obtained as a part of the solution.  相似文献   

6.
In this paper, we consider stochastic partial differential equations driven by space-time white noise in high dimensions. We prove, under reasonable conditions, that the law of the solution admits a density with respect to Lebesgue measure. The stability of the equation, as the higher order differential operator tends to zero, is also studied in the paper.  相似文献   

7.
Stochastic 2-D Navier—Stokes Equation   总被引:1,自引:0,他引:1  
   Abstract. In this paper we prove the existence and uniqueness of strong solutions for the stochastic Navier—Stokes equation in bounded and unbounded domains. These solutions are stochastic analogs of the classical Lions—Prodi solutions to the deterministic Navier—Stokes equation. Local monotonicity of the nonlinearity is exploited to obtain the solutions in a given probability space and this significantly improves the earlier techniques for obtaining strong solutions, which depended on pathwise solutions to the Navier—Stokes martingale problem where the probability space is also obtained as a part of the solution.  相似文献   

8.
This paper is devoted to forward-backward systems of stochastic differential equations in which the forward equation is not coupled to the backward one, both equations are infinite dimensional and on the time interval [0, + ∞). The forward equation defines an Ornstein-Uhlenbeck process, the driver of the backward equation has a linear part which is the generator of a strongly continuous, dissipative, compact semigroup, and a nonlinear part which is assumed to be continuous with linear growth. Under the assumption of equivalence of the laws of the solution to the forward equation, we prove the existence of a solution to the backward equation. We apply our results to a stochastic game problem with infinitely many players.  相似文献   

9.
A finite system of stochastic differential equations defined on a lattice with nearest-neighbor interaction is scaled so that the distance between lattice sites decreases and the size of the system increases. The space—time process defined by the above system is shown to converge in law to the solution of the SPDE associated with the super-Brownian motion on [0, 1] . Accepted 22 June 1998  相似文献   

10.
In this article, we investigate the existence and asymptotic stability in p-th moment of a mild solution to a class of neutral stochastic integro-differential equation of fractional order involving non-instantaneous impulses with infinite delay in a Hilbert space. A new set of sufficient conditions proving existence and asymptotic stability of mild solution is derived by utilizing solution operator, functional analysis, stochastic analysis and fixed point technique. Finally, an example is provided to illustrate the obtained abstract result.  相似文献   

11.
For a mixed stochastic differential equation driven by independent fractional Brownian motions and Wiener processes, the existence and integrability of the Malliavin derivative of the solution are established. It is also proved that the solution possesses exponential moments.  相似文献   

12.
In this paper, we extend Walsh’s stochastic integral with respect to a Gaussian noise, white in time and with some homogeneous spatial correlation, in order to be able to integrate some random measure-valued processes. This extension turns out to be equivalent to Dalang’s one. Then we study existence and regularity of the density of the probability law for the real-valued mild solution to a general second order stochastic partial differential equation driven by such a noise. For this, we apply the techniques of the Malliavin calculus. Our results apply to the case of the stochastic heat equation in any space dimension and the stochastic wave equation in space dimension d=1,2,3. Moreover, for these particular examples, known results in the literature have been improved.   相似文献   

13.
Abstract. This paper deals with an extension of Merton's optimal investment problem to a multidimensional model with stochastic volatility and portfolio constraints. The classical dynamic programming approach leads to a characterization of the value function as a viscosity solution of the highly nonlinear associated Bellman equation. A logarithmic transformation expresses the value function in terms of the solution to a semilinear parabolic equation with quadratic growth on the derivative term. Using a stochastic control representation and some approximations, we prove the existence of a smooth solution to this semilinear equation. An optimal portfolio is shown to exist, and is expressed in terms of the classical solution to this semilinear equation. This reduction is useful for studying numerical schemes for both the value function and the optimal portfolio. We illustrate our results with several examples of stochastic volatility models popular in the financial literature.  相似文献   

14.
A nonlinear stochastic evolution equation in Hilbert space with generalized additive white noise is considered. A concept of stochastic mertial manifold is introduced, defined as a random manifold depending on time, which is finite dimensional, invariant for the dynamic, and attracts exponentially fast all the trajectories as t → ∞. Under the classical spectral gap condition of the deterministic theory, the existence of a stochastic inertial manifold is proved. It is obtained as the solution of a stochastic partial differential equation of degenerate parabolic type, studied by a variant of Bernstein method. A result of existence and uniqueness of a stationary inertial manifold is also proved; the stationary inertial manifold contains the random attractor, introduced in previous works.  相似文献   

15.
   Abstract. This paper deals with an extension of Merton's optimal investment problem to a multidimensional model with stochastic volatility and portfolio constraints. The classical dynamic programming approach leads to a characterization of the value function as a viscosity solution of the highly nonlinear associated Bellman equation. A logarithmic transformation expresses the value function in terms of the solution to a semilinear parabolic equation with quadratic growth on the derivative term. Using a stochastic control representation and some approximations, we prove the existence of a smooth solution to this semilinear equation. An optimal portfolio is shown to exist, and is expressed in terms of the classical solution to this semilinear equation. This reduction is useful for studying numerical schemes for both the value function and the optimal portfolio. We illustrate our results with several examples of stochastic volatility models popular in the financial literature.  相似文献   

16.
Summary Consider a stochastic differential equation on d with smooth and bounded coefficients. We apply the techniques of the quasi-sure analysis to show that this equation can be solved pathwise out of a slim set. Furthermore, we can restrict the equation to the level sets of a nondegenerate and smooth random variable, and this provides a method to construct the solution to an anticipating stochastic differential equation with smooth and nondegenerate initial condition.  相似文献   

17.
We consider measure-valued processes with constant mass in Hilbert space. The stochastic flow which carries the mass satisfies a stochastic differential equation with coefficients depending on the mass distribution. This mass distribution can be considered as the conditional distribution of the solution of a certain SDE. In contrast to the filtration equation, in our case the random measure cannot diffuse: a single particle cannot break up or turn into clouds. The Markov structure of the measure-valued processes obtained is studied and a comparison with Fleming–Viot processes is presented.  相似文献   

18.
This article deals with a stochastic control problem for certain fluids of non-Newtonian type. More precisely, the state equation is given by the two-dimensional stochastic second grade fluids perturbed by a multiplicative white noise. The control acts through an external stochastic force and we search for a control that minimizes a cost functional. We show that the Gâteaux derivative of the control to state map is a stochastic process being the unique solution of the stochastic linearized state equation. The well-posedness of the corresponding stochastic backward adjoint equation is also established, allowing to derive the first order optimality condition.  相似文献   

19.
In this paper, we study the existence and uniqueness of mild solutions to a possibly degenerate elliptic partial differential equation in Hilbert spaces. Our aim is, in the case in which ψ(·, 0, 0) is bounded, to drop the assumptions on the size of λ needed in [11]. The main tool will be existence, uniqueness and regular dependence on parameters of a bounded solution to a suitable backward stochastic differential equation with infinite horizon. Finally we apply the result to study an optimal control problem.   相似文献   

20.
We study a class of hyperbolic stochastic partial differential equations in Euclidean space, that includes the wave equation and the telegraph equation, driven by Gaussian noise concentrated on a hyperplane. The noise is assumed to be white in time but spatially homogeneous within the hyperplane. Two natural notions of solutions are function-valued solutions and random field solutions. For the linear form of the equations, we identify the necessary and sufficient condition on the spectral measure of the spatial covariance for existence of each type of solution, and it turns out that the conditions differ. In spatial dimensions 2 and 3, under the condition for existence of a random field solution to the linear form of the equation, we prove existence and uniqueness of a random field solution to non-linear forms of the equation.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号