首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We study theoretically the effect of impurity scattering in f-wave (or E2u) superconductors. The quasi-particle density of states of f-wave superconductor is very similar to the one for d-wave superconductor as in hole-doped high T c cuprates. Also in spite of anisotropy in Δ( ), both the reduced superfluid density and the reduced electronic thermal conductivity is completely isotropic. Received 11 October 2000  相似文献   

2.
Measurements of the thermal conductivity (kxx) and the thermal Hall effect (kxy) in high magnetic fields in Y- and Bi-based high-T c superconductors are presented. We describe the experimental technique and test measurements on a simple metal (niobium). In the high-T c superconductors kxx and kxy increase below T c and show a maximum in their temperature dependence. kxx has contributions from phonons and quasiparticle (QP) excitations, whereas kxy is purely electronic. The strong increase of kxy below T c gives direct evidence for a strong enhancement of the QP contribution to the heat current and thus for a strong increase of the QP mean free path. Using kxy and the magnetic field dependence of kxx we separate the electronic thermal conductivity ( k xx el ) of the CuO 2 -planes from the phononic thermal conductivity ( k xx ph ). In YBa2Cu3O 7 - δ k xx el shows a pronounced maximum in the superconducting state. This maximum is much weaker in Bi2Sr2CaCu2O 8 + δ , due to stronger impurity scattering. The maximum of k xx el is strongly suppressed by a magnetic field, which we attribute to the scattering of QPs on vortices. An additional magnetic field independent contribution to the maximum of kxx occurs in YBa2Cu3O 7 - δ , reminiscent of the contribution of the CuO-chains, as determined from the anisotropy in untwined single crystals. Our data analysis reveals that below T c as in the normal state a transport (τ) and a Hall ( ) relaxation time must be distinguished: The inelastic (i.e. temperature dependent) contribution to τ is strongly enhanced in the superconducting state, whereas displays the same temperature dependence as above T c . We determine also the electronic thermal conductivity in the normal state from kxy and the electrical Hall angle. It shows an unusual linear increase with temperature. Received 23 August 2000  相似文献   

3.
We report results obtained with two different experimental set-ups in state-of-the-art YBCO thin films as similar as possible, prepared by pulsed laser deposition on LaAlO3 substrates: a surface impedance measurement on 4000 ? thick films using a parallel plate resonator (10 GHz), and a far infrared transmission (100-400 GHz) measurement which requires thinner (1000 ?) samples. The former measurement yields the temperature variation of the penetration depth λ(T) and the real part of the conductivity, provided the absolute value of λ(T) is known. The latter yields the imaginary part of the conductivity, hence the absolute value of the penetration depth, as well as its temperature dependence at the measuring frequency. Combining these two experiments, we establish a quasi-linear temperature variation of λ(T), with a 2 ? K-1 low temperature slope, and a fairly large zero temperature value λ(T = 0)=(1800±200) ? . The scattering rate of the quasi-particles calculated from a two-fluids model shows that the films compare to good quality single crystals, where twice a larger slope has been found. This surprising behavior is described in detail, including an in-depth structural analysis of the samples in order to evaluate their similarities. We find that the 10 GHz data obtained in the thickest films can be fitted to the dirty d-wave mode in the unitarity limit, with an extrapolated slope of 3 ? K-1, but yield a scattering rate that is difficult to reconcile with the high T c (92 K) of the films. Received 7 May 2001 and Received in final form 18 October 2001  相似文献   

4.
We have studied the temperature dependent resistivity ρ( T ) of La2-xSrxCuO4 epitaxial thin films in the doping range 0.045 ⩽ x ⩽ 0.25 in pulsed magnetic fields up to 50 T. The zero-field resistivity ρ( T ) of these samples in the pseudogap regime, can be scaled onto one single universal curve in a broad temperature range by using a linear transformation of both temperature and resistivity. The high field data ρ( T ) reveal a metal to insulator transition (MIT) at low temperatures, well into the overdoped regime. For samples having k F l < 1, with kF the Fermi wave vector and l the mean free path, this low temperature insulating behavior of the resistivity is described by the variable range hopping conductivity (VRH). For samples with k F l > 1, the divergence follows ρ( T ) ∼ ln (1/ T ) or a power law, depending upon the Sr-content. We further found that the residual conductivity at the minimum in ρ( T ), appearing due to the MIT, follows a linear behavior with respect to the Sr-content. It is argued that the unusual MIT in compounds with k F l > 1, is most probably associated with the pseudogap and the behavior of charge stripes at low temperatures. Received 4 January 2002 / Received in final form 7 May 2002 Published online 14 October 2002 RID="a" ID="a"e-mail: liesbet.weckhuysen@fys.kuleuven.ac.be  相似文献   

5.
We consider the effect of Coulomb interactions on the average density of states (DOS) of disordered low-dimensional metals for temperatures T and frequencies ω smaller than the inverse elastic life-time 1/τ. Using the fact that long-range Coulomb interactions in two dimensions (2d) generate ln2-singularities in the DOS ν(ω) but only ln-singularities in the conductivity σ(ω), we can re-sum the most singular contributions to the average DOS via a simple gauge-transformation. If σ(ω) > 0, then a metallic Coulomb gapν(ω) ∝ |ω|/e 4 appears in the DOS at T = 0 for frequencies below a certain crossover frequency Ω 2 which depends on the value of the DC conductivity σ(0). Here, - e is the charge of the electron. Naively adopting the same procedure to calculate the DOS in quasi 1d metals, we find ν(ω) ∝ (|ω|/Ω 1)1/2exp(- Ω 1/|ω|) at T = 0, where Ω 1 is some interaction-dependent frequency scale. However, we argue that in quasi 1d the above gauge-transformation method is on less firm grounds than in 2d. We also discuss the behavior of the DOS at finite temperatures and give numerical results for the expected tunneling conductance that can be compared with experiments. Received 28 August 2001 / Received in final form 28 January 2002 Published online 9 July 2002  相似文献   

6.
We discuss the excess conductivity at nonzero frequencies in a superconductor above Tc within the Gaussian approximation. We focus the attention on the temperature range not too close to Tc: within a time-dependent Ginzburg-Landau formulation, we phenomenologically introduce a short wavelength cutoff (of the order of the inverse coherence length) in the fluctuational spectrum to suppress high momentum modes. We treat the general cases of thin wires, anisotropic thin films and anisotropic bulk samples. We obtain in all cases explicit expressions for the finite frequency fluctuational conductivity. The dc case directly follows. Close to Tc the cutoff has no effect, and the known results for Gaussian fluctuations are recovered. Above Tc, and already for ε = ln(T/T c) > 10-2, we find strong suppression of the paraconductivity as compared to the Gaussian prediction, in particular in the real part of the paraconductivity. At high ε the cutoff effects are dominant. We discuss our results in comparison with data on high-Tc superconductors. Received 19 March 2002 Published online 25 June 2002  相似文献   

7.
Peculiarities of transport properties of three- and two-dimensional half-metallic ferromagnets are investigated, which are connected with the absence of spin-flip scattering processes. The temperature and magnetic field dependences of resistivity in various regimes are calculated. The resistivity is proportional to T 9/2 for T < T * and to T 7/2 for T > T *, T* being the crossover temperature for longitudinal scattering processes. The latter scale plays also an important role in magnetoresistance. The contribution of non-quasiparticle (incoherent) states to the transport properties is discussed. It is shown that they can dominate in the temperature dependence of the impurity-induced resistivity and in the tunnel junction conductivity. Received 16 September 2002 / Received in final form 6 November 2002 Published online 31 December 2002  相似文献   

8.
We present measurements of the diagonal Rxx and off-diagonal Rxy magnetoresistance under quantum Hall conditions on several high electron mobility transistors (HEMT) based on InxGa1-xAs quantum wells. From the magnetoresistance tensor we obtain the longitudinal conductivity σ xx . We study the transport mechanisms near the σ xx minima at temperatures ranging between 2 K and 35 K; activated transport is the dominant mechanism for temperatures above 7 K while variable range hopping conductivity is significant for lower temperatures. We show that electron-electron correlations should be taken into account to explain the conductivity vs temperature behaviour below 5 K. Finally, we study the behaviour of the localization length as a function of Landau level filling and obtain a critical exponent γ = 3.45±0.15. Received 6 June 2001 and Received in final form 16 October 2001  相似文献   

9.
Superconductors put into rotation develope a spontaneous internal magnetic field (the “London field”). In this paper Ginzburg Landau equations for order parameter, field, and current distributions for superconductors in rotation are derived. Two simple examples are discussed: the massive cylinder and the “Little and Parks geometry”: a thin film of superconducting material deposited on a cylinder of normal material. A dependence of T c on rotational frequency is predicted. The magnitude of the effect is estimated and should be observable. Received 28 May 2001  相似文献   

10.
The dielectric permittivity ε - i of SrTi 18O 3 (STO18) is studied under a dc electric field E as a function of the temperature, T. In ε vs. T, a double-peak is found when 0 < E < 30 KV/m. While the peak at high-T is attributed to the smeared ferroelectric phase transition, the low-T one is induced by domain wall motion. The transverse Ising model including an external homogeneous and quenched random-fields is successfully used to describe both the smeared phase transition and the domain wall response in the low-T domain state. The calculations are in good agreement with the experimental results. Received 4 January 2002 / Received in final form 25 March 2002 Published online 19 July 2002  相似文献   

11.
We report synthesis, structure/micro-structure, resistivity under magnetic field [ρ(T)H], Raman spectra, thermoelectric power S(T), thermal conductivity κ(T), and magnetization of ambient pressure argon annealed polycrystalline bulk samples of MgB2, processed under identical conditions. The compound crystallizes in hexagonal structure with space group P6/mmm. Transmission electron microscopy (TEM) reveals electron micrographs showing various types of defect features along with the presence of 3–4 nm thick amorphous layers forming the grain boundaries of otherwise crystalline MgB2. Raman spectra of the compound at room temperature exhibited characteristic phonon peak at 600 cm-1. Superconductivity is observed at 37.2 K by magnetic susceptibility χ(T), resistivity ρ(T), thermoelectric power S(T), and thermal conductivity κ(T) measurements. The power law fitting of ρ(T) give rise to Debye temperature (ΘD) at 1400 K which is found consistent with the theoretical fitting of S(T), exhibiting Θ D of 1410 K and carrier density of 3.81 × 1028/m3. Thermal conductivity κ(T) shows a jump at 38 K, i.e., at Tc, which was missing in some earlier reports. Critical current density (Jc) of up to 105 A/cm2 in 1–2 T (Tesla) fields at temperatures (T) of up to 10 K is seen from magnetization measurements. The irreversibility field, defined as the field related to merging of M(H) loops is found to be 78, 68 and 42 kOe at 4, 10 and 20 K respectively. The superconducting performance parameters viz. irreversibility field (Hirr) and critical current density Jc(H) of the studied MgB2 are improved profoundly with addition of nano-SiC and nano-diamond. The physical property parameters measured for polycrystalline MgB2 are compared with earlier reports and a consolidated insight of various physical properties is presented.  相似文献   

12.
13.
We report a theoretical analysis of the phonon thermal conductance, κ(T), for single wall carbon nanotubes (SWCN). In a range of low temperatues up to 100 K, κ(T) of perfect SWCN is found to increase with temperature, approximately, in a parabolic fashion. This is qualitatively consistent with recent experimental measurements where the tube-tube interactions are negligibly weak. When the carbon-carbon bond length is slightly varied, κ(T) is found to be qualitatively unaltered which implies that the anharmonic effect does not change the qualitative behavior of κ(T). Received 12 June 2001  相似文献   

14.
We study the fluctuation-induced magnetotransport of a two-dimensional superconductor in the quasiballistic regime, where ξ GL(T) ≪ ℓ (ℓ is the electron mean free path and ξ GL(T) is the Ginzburg-Landau coherence length). The magnetoconductivity is evaluated in the nonlocal fluctuation regime thereby extending the existing theory valid in the local limit. We show that the Maki-Thompson (MT) and density-of-states (DOS) contributions strongly compensate each other and their sum is negligible in comparison with the Aslamazov-Larkin (AL) term. The hierarchy of the fluctuation contributions to the magnetoconductivity in the high-field limit is also qualitatively discussed. Received 10 July 2002 / Received in final form 21 November 2002 Published online 7 May 2003  相似文献   

15.
Theoretical and experimental magnetizations of lead nanowire arrays well below the superconducting transition temperature Tc are described. The magnetic response of the array was investigated with a SQUID magnetometer. Hysteretic behaviour and phase transitions have been observed in sweeping up and down the external magnetic field at different temperatures. The Meissner and Abrikosov states were also experimentally observed in this apparently type-I superconductor. This fact brings to the fore the non-trivial behaviour of the critical boundary κ c ( = 1/ in bulk materials) between type-I and type-II phase transitions at mesoscopic scales. The time-independent Ginzburg-Landau equations particularized to cylindrically symmetric configurations enable one to explain and reproduce the experimental magnetization curves within 10% of error. Received 16 January 2003 / Received in final form 27 March 2003 Published online 23 May 2003 RID="a" ID="a"e-mail: stenuit@fynu.ucl.ac.be  相似文献   

16.
Excited states of 99Ag were populated via the 50Cr + 58Ni (261 MeV) reaction using the NORDBALL detector array equipped with charged-particle and neutron detector systems for reaction channel separation. On the basis of the measured γγ-coincidence relations and angular distribution ratios a significantly extended level scheme has been constructed up to E x ∼ 7.8 MeV and I = 35/2. The experimental results were described within the framework of the shell model. Candidates for states fully aligned in the πg 9/2 -3ν(d 5/2, g 7/2)2 valence configuration space were found at 4109 and 6265 keV. Received: 18 June 2002 / Accepted: 11 October 2002 / Published online: 4 February 2003 RID="a" ID="a"e-mail: sohler@atomki.hu Communicated by J. ?yst?  相似文献   

17.
We solve the problem of a Bose or Fermi gas in d-dimensions trapped by δ ⩽ d mutually perpendicular harmonic oscillator potentials. From the grand potential we derive their thermodynamic functions (internal energy, specific heat, etc.) as well as a generalized density of states. The Bose gas exhibits Bose-Einstein condensation at a nonzero critical temperature T c if and only if d + δ > 2, along with a jump in the specific heat at T c if and only if d + δ > 4. Specific heats for both gas types precisely coincide as functions of temperature when d + δ = 2. The trapped system behaves like an ideal free quantum gas in d + δ dimensions. For δ = 0 we recover all known thermodynamic properties of ideal quantum gases in d dimensions, while in 3D for δ = 1, 2 and 3 one simulates behavior reminiscent of quantum wells, wires anddots, respectively. Good agreement is found between experimental critical temperatures for the trapped boson gases 37 87Rb, 3 7Li, 37 85Rb, 2 4He, 19 41K and the known theoretical expression which is a special case for d = δ = 3, but only moderate agreement for 11 27Na and 1 1H. Received 17 July 2002 / Received in final form 14 October 2002 Published online 21 January 2003 RID="a" ID="a"e-mail: mdgg@hp.fciencias.unam.mx  相似文献   

18.
19.
The longitudinal and transverse nuclear magnetic relaxation rates 1/T 1(T) and 1/T 2(T) are calculated for three- and two-dimensional (3D and 2D) metallic ferro- and antiferromagnets (FM and AFM) with localized magnetic moments in the spin-wave temperature region. The contribution of the one-magnon decay processes is strongly enhanced in comparison with the standard T-linear Korringa term, especially for the FM case. For the 3D AFM case this contribution diverges logarithmically, the divergence being cut at the magnon gap ω due to magnetic anisotropy, and for the 2D AFM case as ω-1. The electron-magnon scattering processes yield T 2ln(T) and T 21/2-terms in 1/T 1 for the 3D AFM and 2D FM cases, respectively. The two-magnon (“Raman”) contributions are investigated and demonstrated to be large in the 2D FM case. Peculiarities of the isotropic 2D limit (where the correlation length is very large) are analyzed. Received 29 November 1999 and Received in final form 6 June 2000  相似文献   

20.
High-spin states of 157Dy were investigated using in-beam γ-ray spectroscopy techniques with a 150Nd(12C, 5n) reaction. Three rotational bands with the h 9/2, i 13/2 and h 11/2 configurations were observed up to (43/2-), 53/2+ and 45/2-, respectively. Interband M1 transitions in the h 11/2 (high-Ω) band were also measured up to the highest-spin state. The high-spin states were well reproduced by calculations using the tilted-axis-cranking model (TAC). The B(M1)/B(E2) ratio, Routhian and the tilted angle of the angular-momentum vector are found to be in good agreement with the result of the TAC calculation. Received: 22 August 2002 / Accepted: 26 September 2002 / Published online: 19 November 2002 RID="a" ID="a"e-mail: hayakawa@jball4.tokai.jaeri.go.jp Communicated by W. Henning  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号