首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TiO2 nanoparticles and H2Ti2O5·H2O, Na2Ti2O4(OH)2 nanotubes were synthesized by solvothermal method and their applications in the degradation of active Brilliant-blue (KN-R) solution were investigated. The experimental results revealed that the synthesized TiO2 nanoparticles had a good crystallinity and a narrow size distribution (about 4–5 nm); the obtained H2Ti2O5·H2O, Na2Ti2O4(OH)2 were tubelike products with an average diameter of 20–30 and 200–300 nm length. The three catalysts we synthesized had some hydroxyl groups and the maximum absorption boundaries of the samples were all red-shifted, which indicated the samples had a promising prospect in photocatalysis.

The results of the photocatalytic experiments indicated that the photocatalytic activity of the samples was: TiO2 > H2Ti2O5·H2O > Na2Ti2O4(OH)2, which was in good accordance with the fact of FTIR and UV–vis absorption spectra. The formation mechanism of these nanostructures was also discussed.  相似文献   


2.
The mesoporous Si-MCM-41 was synthesized by hydrothermal method and various wt.% (20 and 30 wt.%) of HPW were loaded on Si-MCM-41 by wet impregnation method. The synthesized Si-MCM-41 and HPW-loaded catalysts were characterized by XRD, BET surface area, FT-IR, TEM and TGA–DTG techniques. The catalytic activity of the catalyst was tested over the condensation reaction of aniline with various aromatic aldehydes at refluxing temperature under liquid-phase condition, which yields highly commercial product namely diamino triphenyl methanes (DATPMs). The effects of various parameters like catalyst, mole ratio, solvents and substituent effect on the formation of DATPMs were optimized. The catalytic activity of the catalysts showed the following order: H3PW12O40·nH2O > H3PMo12O40·nH2O > H4SiW12O40·nH2O > 20 wt.% HPW/MCM-41 > 30 wt.% HPW/MCM-41 > HM (12) > Hβ (8) > HY (4) > HZSM-5 (15) > Al-MCM-41 (25). The results showed that mole ratio of 4:1 (aniline:aldehyde) gave higher yield than the other mole ratios. Acetonitrile and ethyl acetate shows better activity especially in the supported materials than toluene was used as a solvent. The product thus obtained was analyzed by 1H NMR, FT-IR techniques.  相似文献   

3.
The silanol TsiSiMe2OH (Tsi = (Me3Si)3C) has been made by hydrolysis of the iodide TsiSiMe2I in H2O/dioxane or H2O/Me2SO. It has been shown to react with some acid chlorides RCOCl (R=Me, Et, CICH2 Ph, 4-O2NC6H4, and 3,5- (O2N)2C6H3) and anhydrides (RCO)2O (R = Me, CF3, or Ph) to give the carboxylates TsiSiMe2OCOR, and with SO2Cl2 to give TsiSiMe2OSO2Cl. The triol TsiSi(OH)3 has been made by treatment of TsiSiH(OH)I with H2O/Me2SO at 150°C or with a mixture of aqueous AgClO4 and an organic solvent. The triol has been shown to react with RCOCl (R = Me, Et, or Ph) or (RCO)2O (R = Ph) to give the corresponding TsiSi(OCOR)3, with (CF3CO)2O to give TsiSi(OH)2(OCOCF3), and with a mixture of Me3SiCl and AgClO4 in benzene or one of Me3Sil and (Me3Si)NH to give TsiSi(OSiMe3)3. The triol is unusually stable, but decomposes at its m.p. of 285–290°C.  相似文献   

4.
A series of novel heterobimetallic crown ether-like polyoxadiphosphaplatinaferrocenophanes cis-[1,1′-Fc(CH2O(CH2CH2O)nCH2CH2PPh2)2]PtCl2 (n=1–3) (4a–c) was synthesized in good yield by cyclization of the bis(phosphine) ligands 1,1′-Fc(CH2O(CH2CH2O)nCH2CH2PPh2)2 (n=1–3) (3a–c) and (PhCN)2PtCl2 under high dilution conditions in CH2Cl2. The bisphosphines 3a–c are obtained by reaction of the corresponding diols 1,1′-Fc(CH2O(CH2CH2O)nCH2CH2OH)2 (n=1–3) (1a–c) with: (i) CH3SO2Cl in CH2Cl2 and (ii) LiPPh2 in THF. Although the X-ray crystal structure of 4a shows that the cavity is large enough for the encapsulation of small metal cations, inclusion experiments of 4a–c with Group 1 cations, and Mg2+, or NH4+ in solution applying NMR titration and cyclovoltammetric methods reveal no evidence for the formation of host–guest complexes for 4a,b. In the case of 4c only the addition of Na+ or K+ leads to an insignificant effect.  相似文献   

5.
CrO3 in CH2Cl2/CH3COOH/(CH3CO)2O oxidizes hydrocarbons to alcohols and ketones, 5-androstane and 3β-acetoxy-5-androstane are converted to 5-androst-14-en-16-ones.  相似文献   

6.
The optimized structures and proton transfer reactions of 3-methyl-5-hydroxyisoxazole and its water complexes (3-M-5-HIO · (H2O)n · (n = 0–3)) were computed at B3LYP and MP2 theoretical level. The results indicates that 3-M-5-HIO has four isomers (Ecis, Etrans, K1 and K2), and the keto tautomer, and K2 is the most stable isomer in the gas phase. Hydrogen bonding between 3-M-5-HIO and the water molecules can dramatically lower the barrier by the concerted transfer mechanism. Ecis · (H2O)3 → K1 · (H2O)3 and Ecis · (H2O)2 → K2 · (H2O)2 is found to be very efficient. Comparing with the proton transfer mechanism of 5-HIO shows that the methyl substitution prevents the intramolecular proton transfer.  相似文献   

7.
Six mononuclear complexes [M(L1)2(H2O)4] (M = Co(II), 1a and M = Mn(II), 1b), [Cu(L1)2(H2O)2] (1c), [Cu(L1)2(H2O)(Py)2] (1d), [Cu(L3)(H2O)Cl] · H2O (3a) and [Co(Sal)(H2O)(Py)3] · 2ClO4 · H2O (3b) of phenoxyacetic acid derivatives and Schiff base were determined by single crystal X-ray diffraction. The Co(II) (1a) and Mn(II) (1b) complexes are isomorphous. X-ray crystal structural analyses reveal that these coordination complexes form polymeric structure via formation of different types of hydrogen bonding and π-stacking interactions in solid. Thermal analysis along with the powder X-ray diffraction data of these complexes shows the importance of the coordinated and/or crystal water molecules in stabilizing the MOF structure. Complexes 1a, 1c, 3a show marginal catalytic activity in the oxidation of olefins to epoxides in the presence of i-butyraldehyde and molecular oxygen.  相似文献   

8.
Three interpenetrated polymeric networks, {[Co(bpp)(OH-BDC)] · H2O}n (1) [Ni(bpp)1.5(H2O)(OH-BDC)]n (2) and {[Cd(bpp)(H2O)(OH-BDC)] · 2H2O}n (3), have been prepared by hydrothermal reactions of 1,3-bis(4-pyridyl)propane (bpp), 5-hydroxyisophthalic acid (OH-H2BDC), with Co(NO3)2 · 6H2O, Ni(NO3)2 · 6H2O and Cd(NO3)2 · 4H2O, respectively. Single-crystal X-ray diffraction analyses reveal that the three compounds all exhibit interpenetrated but entirely different structures. Compound 1 is a fourfold interpenetrated adamantanoid structure with water molecules as space fillers, in which bpp adopts a TG conformation (T = trans, G = gauche). Compound 2 is an interdigitated structure from the interpenetrated long arms of one-dimensional molecular ladders, while bpp in 2 adopts both TT and TG conformations. Compound 3 is a twofold interpenetrated three-dimensional network from a one-dimensional metal-carboxylate chain bridged by TG conformational bpp. The hydrogen bonding interactions in 1–3 further stabilize the whole structural frameworks and play critical roles in their constructions.  相似文献   

9.
CdII complexes with glycine (gly) and sarcosine (sar) were studied by glass electrode potentiometry, direct current polarography, virtual potentiometry, and molecular modelling. The electrochemically reversible CdII–glycine–OH labile system was best described by a model consisting of M(HL), ML, ML2, ML3, ML(OH) and ML2(OH) (M = CdII, L = gly) with the overall stability constants, as log β, determined to be 10.30 ± 0.05, 4.21 ± 0.03, 7.30 ± 0.05, 9.84 ± 0.04, 8.9 ± 0.1, and 10.75 ± 0.10, respectively. In case of the electrochemically quasi-reversible CdII–sarcosine–OH labile system, only ML, ML2 and ML3 (M = CdII, L = sar) were found and their stability constants, as log β, were determined to be 3.80 ± 0.03, 6.91 ± 0.07, and 8.9 ± 0.4, respectively. Stability constants for the ML complexes, the prime focus of this work, were thus established with an uncertainty smaller than 0.05 log units. The observed departure from electrochemical reversibility for the Cd–sarcosine–OH system was attributed mainly to the decrease in the transfer coefficient . The MM2 force field, supplemented by additional parameters, reproduced the reported crystal structures of diaqua-bis(glycinato-O,N)nickel(II) and fac-tri(glycinato)-nickelate(II) very well. These parameters were used to predict structures of all possible isomers of (i) [Ni(H2O)4(gly)]+ and [Ni(H2O)4(sar)]+; and (ii) [Ni(H2O)3(IDA)] and [Ni(H2O)3(MIDA)] (IDA = iminodiacetic acid, MIDA = N-methyl iminodiacetic acid) by molecular mechanics/simulated annealing methods. The change in strain energy, ΔUstr, that accompanies the substitution of one ligand by another (ML + L′ → ML′ + L), was computed and a strain energy ΔUstr = +0.28 kcal mol−1 for the reaction [Ni(H2O)4(gly)]+ + sar → [Ni(H2O)4(sar)]+ + gly was found. This predicts the monoglycine complex to be marginally more stable. By contrast, for the reaction [Ni(H2O)3IDA] + MIDA → [Ni(H2O)3MIDA] + IDA, ΔUstr = −0.64 kcal mol−1, and the monoMIDA complex is predicted to be more stable. This correlates well with (i) stability constants for Cd–gly and Cd–sar reported here; and (ii) known stability constants of ML complex for glycine, sarcosine, IDA, and MIDA.  相似文献   

10.
Thermal decomposition of mixed ligand thymine (2,4-dihydroxy-5-methylpyrimidine) complexes of divalent Ni(II) with aspartate, glutamate and ADA (N-2-acetamido)iminodiacetate dianions was monitored by TG, DTG and DTA analysis in static atmosphere of air. The decomposition course and steps of complexes [Ni(C5H6N2O2)(C4H5NO4)2−(H2O)2]·H2O, [Ni(C5H6N2O2)(C5H7NO4)2−(H2O)2]·H2O and [Ni(C5H6N2O2)(C6H8N2O5)2−(H2O)2]·1.5H2O were analyzed. The final decomposition products are found to be the corresponding metal oxides. The kinetic parameters namely, activation energy (E*), enthalpy (ΔH*), entropy (ΔS*) and free energy change of decomposition (ΔG*) are calculated from the TG curves using Coats–Redfern and Horowitz–Metzger equations. The stability order found for these complexes follows the trend aspartate > ADA > glutamate.  相似文献   

11.
采用水热方法合成了4种Sm3+配合物, 即{[SmZn(2,5-pdc)2(tp)0.5(H2O)]·2H2O}n(1), [Sm2Zn2(C6H5COO)10(Imh)2(H2O)2](2), {[Sm2(NO2C6H4COO)6(H2O)4]·H2O}n(3)和{[SmN(CH2COO)3(H2O)2]·H2O}n(4)[2,5-pdc=2,5-吡啶二羧酸根, tp=对苯二甲酸根, C6H5COO=苯甲酸根, Imh=咪唑, NO2C6H4COO=对硝基苯甲酸根, N(CH2COO)3=氨三乙酸根]. 通过单晶X射线衍射确定了其晶体结构. 在室温下测定了其红外光谱、 紫外-可见-近红外光谱以及在近红外区和可见区的发射光谱. 结果表明, 4种配合物在近红外区或可见区均出现Sm3+离子的特征发射. 这是形成配合物后, Zn-配体部分和配体对Sm3+离子发光的敏化作用所致. 此外, 讨论了不同有机配体或d过渡金属离子对Sm3+离子发光的影响, 并分析了配合物中Sm3+离子的近红外发射带位移、 劈裂和加宽的原因.  相似文献   

12.
Hydrated strontium borate, SrB4O7·3H2O, has been synthesized and characterized by XRD, FT-IR, DTA-TG and chemical analysis. The molar enthalpy of solution of SrB4O7·3H2O in 1 mol dm−3 HCl(aq) was measured to be (21.15 ± 0.29) kJ mol−1. With incorporation of the previously determined enthalpies of solution of Sr(OH)2·8H2O(s) in [HCl(aq) + H3BO3(aq)] and H3BO3 in HCl(aq), and the enthalpies of formation of H2O(l), Sr(OH)2·8H2O(s) and H3BO3(s), the enthalpy of formation of SrB4O7·3H2O was found to be −(4286.7 ± 3.3) kJ mol−1.  相似文献   

13.
In this paper, we summarise our recent research interest in the hydrothermal synthesis and structural characterisation of multi-dimensional coordination polymers. The use of N-(phosphonomethyl)iminodiacetic acid (also referred to as H4pmida) in the literature as a versatile chelating organic ligand is briefly reviewed. This molecule plays an important role in the formation of centrosymmetric dimeric [V2O2(pmida)2]4− anionic units, which were first used by us as building blocks to construct novel coordination polymers. Starting with [V2O2(pmida)2]4− in solution, we have isolated [M2V2O2(pmida)2(H2O)10] species (where M2+ = Mn2+, Co2+ or Cd2+) via the hydrothermal synthetic approach, which were then employed for the construction of [CdVO(pmida)(4,4′-bpy)(H2O)2]·(4,4′-bpy)0.5·(H2O), [CoVO(pmida)(4,4′-bpy)(H2O)2]·(4,4′-bpy)0.5, [Co(H2O)6][CoV2O2(pmida)2(pyr)(H2O)2]·2(H2O) and [Cd2V2O2(pmida)2(pyr)2(H2O)4]·4(H2O) by the inclusion of bridging organic ligands in the reactive mixtures, such as pyrazine (pyr) and 4,4′-bipyridine (4,4′-bpy). These materials can contain channel systems, and exhibit magnetic behaviour, not only due to the V4+ centres but also to the transition metal centres which establish the links between neighbouring dimeric [V2O2(pmida)2]4− anionic units. A closely related anionic moiety, [Ge2(pmida)2(OH)2]2−, was engineered to allow the study of such crystalline hybrid materials using one- and two-dimensional high-resolution solid-state NMR.  相似文献   

14.
We reported here four structures of lanthanide–amino acid complexes obtained under near physiological pH conditions and their individual formula can be described as [Tb2(dl-Cys)4(H2O)8]Cl2 (1), [Eu43-OH)4(l-Asp)2(l-HAsp)3(H2O)7] Cl · 11.5H2O (2), [Eu8(l-HVal)16(H2O)32]Cl24 · 12.5H2O (3), and [Tb2(dl-HVal)4(H2O)8]Cl6 · 2H2O (4). These complexes showed diverse structures and have shown potential application in DNA detection. We studied the interactions of the complexes with five single-stranded DNA and found different fluorescence enhancement, binding affinity and binding stoichiometry when the complexes are bound to DNA.  相似文献   

15.
(C6H5)3MX2 (M = As, Sb; X = OCOCF3 and M = Sb, Bi; X = SO3F, SO3CF3) compounds prepared by the interaction of triphenylmetal(V) substrates with (CF3CO)2O, (CF3SO2)2O and (FSO2)2O have been characterized by molecular weight determination, elemental and spectroscopic (IR, 1H and 19F NMR, mass) analyses.  相似文献   

16.
[Re2(Ala)4(H2O)8](ClO4)6 (Re=Eu, Er; Ala=alanine) were synthesized, and the low-temperature heat capacities of the two complexes were measured with a high-precision adiabatic calorimeter over the temperature range from 80 to 370 K. For [Eu2(Ala)4(H2O)8](ClO4)6, two solid–solid phase transitions were found, one in the temperature range from 234.403 to 249.960 K, with peak temperature 243.050 K, the other in the range from 249.960 to 278.881 K, with peak temperature 270.155 K. For [Er2(Ala)4(H2O)8](ClO4)6, one solid–solid phase transition was observed in the range from 270.696 to 282.156 K, with peak temperature 278.970 K. The molar enthalpy increments, ΔHm, and entropy increments,ΔSm, of these phase transitions, were determined to be 455.6 J mol−1, 1.87 J K−1 mol−1 at 243.050 K; 2277 J mol−1, 8.43 J K−1 mol−1 at 270.155 K for [Eu2(Ala)4(H2O)8](ClO4)6; and 4442 J mol−1, 15.92 J K−1 mol−1 at 278.970 K for [Er2(Ala)4(H2O)8](ClO4)6. Thermal decompositions of the two complexes were investigated by use of the thermogravimetric (TG) analysis. A possible mechanism for the thermal decomposition is suggested.  相似文献   

17.
Two novel hydrogen maleato (HL) bridged Cu(II) complexes 1[Cu(phen)Cl(HL)2/2] 1 and 1[Cu(phen)(NO3)(HL)2/2] 2 were obtained from reactions of 1,10-phenanthroline, maleic acid with CuCl2·2H2O and Cu(NO3)2·3H2O, respectively, in CH3OH/H2O (1:1 v/v) at pH=2.0 and the crystal structures were determined by single crystal X-ray diffraction methods. Both complexes crystallize isostructurally in the monoclinic space group P21/n with cell dimensions: 1 a=8.639(2) Å, b=15.614(3) Å, c=11.326(2) Å, β=94.67(3)°, Z=4, Dcalc=1.720 g/cm3 and 2 a=8.544(1) Å, b=15.517(2) Å, c=12.160(1) Å, β=90.84(8)°, Z=4, Dcalc=1.734 g/cm3. In both complexes, the square pyramidally coordinated Cu atoms are bridged by hydrogen maleato ligands into 1D chains with the coordinating phen ligands parallel on one side. Interdigitation of the chelating phen ligands of two neighbouring chains via π–π stacking interactions forms supramolecular double chains, which are then arranged in the crystal structures according to pseudo 1D close packing patterns. Both complexes exhibit similar paramagnetic behavior obeying Curie–Weiss laws χm(T−θ)=0.414 cm3 mol−1 K with the Weiss constants θ=−1.45, −1.0 K for 1 and 2, respectively.  相似文献   

18.
The density functional theory and Hartree–Fock methods were used to investigate the proton transfer reaction for a series of model clusters of zeolite/(H2O)n; n=1,2,3, and 4. Without promoted water, the hydrogen-bonded dimer of the water/zeolite system exists as a simple hydrogen-bonded complex, ZOH.(H2O)2, and no proton transfer occurs from zeolite to water. The third promoted water, ZOH(H2O)2H2O, was found to induce a pathway for proton transfer, but at least addition two promoted molecules, ZO(H3O+)H2O(H2O)2, must be involved for complete proton transfer from zeolite to H2O. The results show that the hydronium ion in water cluster adsorbed on zeolite, ZO(H3O+)(H2O)3, can considerably affect the structure and bonding of the hydrogen-bonded dimer of water. The OO distance is contracted from 2.818 Å found in the neutral complex, ZOH(H2O)4, to 2.777 Å for ion-pair complex, ZO(H3O+)(H2O)3. The distance between the oxygen of the hydronium ion and the zeolitic acid site oxygen is predicted to be 2.480 Å which is in good agreement with the experimentally observed value of 2.510 Å. The corresponding density functional adsorption energy of the high coverages of adsorbing molecules on zeolite is calculated to be −9.14 kcal/mol per molecule at B3LYP/6-311+G(d,p) level of theory and compares well with the experimental observation of −8.20 kcal/mol.  相似文献   

19.
Mononuclear copper(II) complexes of a family of pyridylmethylamide ligands HL, HLMe, HLPh, HLMe3 and HLPh3, [HL = N-(2-pyridylmethyl)acetamide; HLMe = N-(2-pyridylmethyl)propionamide; HLPh = 2-phenyl-N-(2-pyridylmethyl)acetamide; HLMe3 = 2,2-dimethyl-N-(2-pyridylmethyl)propionamide; HLPh3 = 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide], were synthesized and characterized. The reaction of copper(II) salts with the pyridylmethylamide ligands yields complexes [Cu(HL)2(OTf)2] (1), [Cu(HLMe)2](ClO4)2 (2), [Cu(HL)2Cl]2[CuCl4] (3), [Cu(HLMe3)2(THF)](OTf)2 (4), [Cu(HLMe3)2(H2O)](ClO4)2 (5a and 5b), [Cu(HLPh3)2(H2O)](ClO4)2 (6), [Cu(HL)(2,2′-bipy)(H2O)](ClO4)2 (7), and [Cu(HLPh)(2,2′-bipy)(H2O)](ClO4)2 (8). All complexes were fully characterized, and the X-ray structures vary from four-coordinate square-planar, to five-coordinate square-pyramidal or trigonal-bipyramidal. The neutral ligands coordinate via the pyridyl N atom and carbonyl O atom in a bidentate fashion. The spectroscopic properties are typical of mononuclear copper(II) species with similar ligand sets, and are consistent their X-ray structures.  相似文献   

20.
[Eu(ABA)(phen)2(H2O)3](ClO4)3·3phen·4.5H2O (1) and [Eu(Val)(phen)2(H2O)3](ClO4)3·3phen·2H2O (2) are two new europium complexes with amino acids and 1,10-phenanthroline (phen=1,10-phenanthroline, ABA=-amino butyl acid, Val= -valine). Their crystal structures were measured by X-ray crystallography. Europium atoms in both complexes are nine-coordinated with bidentate 1,10-phenanthroline and carboxylate anion of amino acids, and water molecules. In the solid state, 1 and 2 have a structure involving aromatic stacking of the coordinated and non-coordinated 1,10-phenanthroline and the oxygen atoms of non-coordinated perchlorate anions being H-bond acceptors connect [Eu(ABA)(phen)2(H2O)3]3+·3phen·4.5H2O or [Eu(Val)(phen)2(H2O)3]3+·3phen·2H2O in their structures. In their interactions, several C–HO bonds play an important role. Owing to their different amino acid ligands and the number of lattice water molecules, there is some difference in their hydrogen bond patterns in 1 and 2. The side chain of -valine is involved in the formation of C–HO bonds. Hydrogen bond and π–π interactions determine the supramolecular formation of three-dimensional net works of both complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号