首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A solid-state electrochemiluminescence (ECL) biosensing switch based on special ferrocene-labeled molecular beacon (Fc-MB) has been successfully developed for T4 DNA ligase detection. Such special switch system consisted of two main parts, an ECL substrate and an ECL intensity switch. The ECL substrate was made by modifying the complex of Au nanoparticle and Ruthenium (II) tris-(bipyridine) (Ru(bpy)32+-AuNPs) onto Au electrode. A molecular beacon labeled by ferrocene as the ECL intensity switch. The molecular beacon is designed with special base sequence, which could combine with its target biomolecule via the reaction of the repair and recombination of nucleic acids by DNA ligase. During the reaction, the molecular beacon opened its stem-loop, and the labeled Fc was consequently kept away from the ECL substrate. Such structural change resulted in an obvious increment in ECL intensity due to the decreased Fc quenching effect to the ECL substrate. The analysis results are sensitive and specific.  相似文献   

2.
One solid-state electrochemiluminescence(ECL) protein biosensor based on the competing reaction and substitute reaction between protein-to-DNA aptamer and DNA-to-DNA aptamer was proposed.Additionally,the biosensor was based on ECL photo-quenching effect of ferrocene(Fc) to tris(2,2'-bipyridyl)ruthenium(II)(Ru(bpy)32+).It was built up by modification of Au nanoparticles(AuNPs) and Ru(bpy)3 2+ on one Au electrode firstly,and then self-assembly of one special double-stranded DNA(dsDNA) onto the electrode.This ...  相似文献   

3.
A simple, selective and sensitive “signal-on” electrogenerated chemiluminescence (ECL) biosensing method was developed for matrix metalloproteinase 2 (MMP-2). Ru(bpy)32+, gold nanoparticles (AuNPs) and Nafion were modified onto glassy carbon electrode (GCE) to form Ru(bpy)32+/AuNPs/Nafion/GCE as sensitive ECL platform and then ferrocene (Fc) labeled peptide was assembled onto the modified electrode to form ECL biosensing platform. The ECL intensity increased when the ECL biosensing electrode reacted with MMP-2 because of MMP-2-induced cleavage of Fc labeled peptide. The ECL method was applied to determine MMP-2 with detection limit of 0.3 ng/mL and one-step recognition, which is promising for point-of-care test of protease.  相似文献   

4.
基于苯海拉明对联吡啶钌(Ru(bpy)2+3)的电化学发光的增敏作用和丝素蛋白-联吡啶钌复合膜修饰玻碳电极稳定好的特点,建立了一种以丝素蛋白多孔膜-联吡啶钌复合物修饰的玻碳电极电化学发光检测苯海拉明的新方法.结果表明,该修饰电极具有很好的电化学活性和电化学发光(ECL)响应.在最佳实验条件下,苯海拉明浓度在1.0×10-4~1.0×10-7 mol/L范围内与其相对发光强度呈良好的线性关系(r=0.9989); 检出限为2.3×10-7 mol/L(S/N=3).连续平行测定3.78×10-5 mol/L苯海拉明5次,发光强度的RSD为1.76%. 用于实际样品中苯海拉明的测定,结果满意.  相似文献   

5.
利用静电吸附作用将联吡啶钌[Ru(bpy)32+]负载到巯基化MCM-41介孔二氧化硅纳米颗粒上, 通过金-巯键修饰法将负载后的MCM-41固定在金电极表面, 发展了一种基于MCM-41负载联吡啶钌的电致化学发光传感器, 并研究了其电化学及电致化学发光行为. 基于三聚氰胺与增敏剂三正丙胺氨基结构的相似性, 将负载Ru(bpy)32+的MCM-41电致化学发光传感器用于三聚氰胺的检测, 获得了良好的检测效果, 为检测三聚氰胺提供了一种快速、简便的方法. 同时, 该研究为Ru(bpy)32+在电极表面的固定化提供了新思路.  相似文献   

6.
赵丽  陶颖  陈曦 《化学学报》2006,64(4):320-324
通过电化学循环伏安法和电致化学发光方法,研究了Ru(bpy)32 在玻碳电极上的吸附,研究结果表明,2Ru(bpy)3 的浓度和与玻碳材料接触的时间,直接影响了Ru(bpy)32 在玻碳上的吸附.还考察了吸附的Ru(bpy)32 在玻碳电极上被氧化后脱附的情况.  相似文献   

7.
The electrochemiluminescence (ECL) of magnetic microbeads modified with tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)3]2+) was studied in the presence of tri-n-propylamine (TPA) to develop highly sensitive ECL detection system, where the employed microbead has a diameter of 4.5 microm. The ECL signal of the [Ru(bpy)3]2+ derivative-modified magnetic microbeads was found to be affected by the geometrical distribution of the magnetic microbeads on the electrode surface. The ECL peak intensity increased with increasing the number of the beads on the electrode surfaces up to 1.6 x 10(6) beads cm(-2), although above 1.6 x 10(6) beads cm(-2), it decreased. The ECL decrease arises from the physical prevention of the ECL from reaching the photomultiplier tube by the excessive beads. The observed peak ECL signal of the [Ru(bpy)3]2+ derivative-modified magnetic microbeads in the presence of NaN3, which serves as a preservative substance, mainly appeared at a potential of +0.90 V vs Ag/AgCl where [Ru(bpy)3]2+ is hardly oxidized, whereas the ECL signal in the absence of NaN3 appeared at a potential of +1.15 V. The presence of NaN3 on the electrode surface retards formation of an oxide layer on the electrode surfaces and promotes TPA oxidation. The ECL response at +0.90 V was mainly attributed to ECL reaction of excited-state [Ru(bpy)3]2+* formed by oxidation of [Ru(bpy)3]+ with TPA radical cation, where the [Ru(bpy)3]+ was generated by reduction of [Ru(bpy)3]2+ with TPA radical.  相似文献   

8.
A solid-state electrochemiluminescence sensing platform based on ferrocene-labeled structure-switching signaling aptamer (Fc-aptamer) for highly sensitive detection of small molecules is developed successfully using adenosine as a model analyte. Such special sensing platform included two main parts, an electrochemiluminescence (ECL) substrate and an ECL intensity switch. The ECL substrate was made by modifying the complex of Au nanoparticle and Ruthenium (II) tris-(bipyridine) (Ru(bpy)32+-AuNPs) onto Au electrode. An anti-adenosine aptamer labeled by ferrocene acted as the ECL intensity switch. A short complementary ssDNA for the aptamer was applied to hybridizing with the aptamer, yielding a double-stranded complex of the aptamer and the ssDNA on the electrode surface. The introduction of adenosine triggered structure switching of the aptamer. As a result, the ssDNA was forced to dissociate from the sensing platform. Such structural change of the aptamer resulted in an obvious ECL intensity decrease due to the increased quenching effect of Fc to the ECL substrate. The analytic results were sensitive and specific.  相似文献   

9.
The facile synthesis of the novel platinum nanoparticles/Eastman AQ55D/ruthenium(II) tris(bipyridine) (PtNPs/AQ/Ru(bpy)3(2+)) colloidal material for ultrasensitive ECL solid-state sensors was reported for the first time. The cation ion-exchanger AQ was used not only to immobilize ECL active species Ru(bpy)3(2+) but also as the dispersant of PtNPs. Colloidal characterization was accomplished by transmission electron microscopy (TEM), X-ray photoelectron spectrum (XPS), and UV-vis spectroscopy. Directly coating the as-prepared colloid on the surface of a glassy carbon electrode produces an electrochemiluminescence (ECL) sensor. The electronic conductivity and electroactivity of PtNPs in composite film made the sensor exhibit faster electron transfer, higher ECL intensity of Ru(bpy)3(2+), and a shorter equilibration time than Ru(bpy)3(2+) immobilized in pure AQ film. Furthermore, it was demonstrated that the combination of PtNPs and permselective cation exchanger made the sensor exhibite excellent ECL behavior and stability and a very low limit of detection (1 x 10(-15) M) of tripropylamine with application prospects in bioanalysis. This method was very simple, effective, and low cost.  相似文献   

10.
Lin Z  Chen G 《Talanta》2006,70(1):111-115
A multi-wall carbon nanotube (MWNT)/Nafion composite film-modified electrode was developed in this paper, and its chemical and electrochemiluminescent (ECL) behavior of tris(2,2′-bipyridyl)ruthenium (Ru(bpy)32+) on this electrode has been investigated in detail. It has been also found that some carbamates were able to enhance the ECL intensity of Ru(bpy)32+ greatly at this modified electrode. Based on which, a sensitive and simple method for determination of pirimicarb, methomyl, aldicarb and carbofuran were developed, and the proposed method has been applied to determine the carbamates in the nature water.  相似文献   

11.
L-半胱氨酸修饰金电极电化学发光法测定罗红霉素   总被引:2,自引:1,他引:1  
在裸金电极上制备了L-半胱氨酸自组装膜修饰电极(L-Cys-Au/SAM/CME).考察了联吡啶钌和罗红霉素在此修饰电极上的电化学及其发光行为.结果表明,此修饰电极表现出了很好的电化学活性和电化学发光(ECL)响应.基于罗红霉素的存在可增大了联吡啶钌的发光强度,建立了测定罗红霉素片的电化学发光分析方法.在最佳实验条件下,罗红霉素浓度在1.0×10-7~1.0×10-4 mol/L范围内与其相对发光强度呈线性关系,其线性回归方程为I=2×107C+384.02, r=0.9977; 检出限(S/N=3)为1.0×10-7 mol/L.连续测定1.8×10-5 mol/L罗红霉素10次,发光强度的RSD为1.93% , 表明此修饰电极具有较好的重现性,并将本方法用于罗红霉素片剂的检测.  相似文献   

12.
This paper reports a novel detection method for DNA hybridization based on the electrochemiluminescence (ECL) of Ru(bpy)(3)(2+) with a DNA-binding intercalator as a reductant of Ru(bpy)(3)(3+). Some ECL-inducible intercalators have been screened in this study using electrochemical methods combined with a chemiluminescent technique. The double-stranded DNA intercalated by doxorubicin, daunorubicin, or 4',6-diamidino-2-phenylindole (DAPI) shows a good ECL with Ru(bpy)(3)(2+) at +1.19 V (versus Ag/AgCl), while the non-intercalated single-stranded DNA does not. In order to stabilize the self-assembled DNA molecules during ECL reaction, we constructed the ECL DNA biosensor separating the ECL working electrode with an immobilized DNA probe. A gold electrode array on a plastic plate was assembled with a thru-hole array where oligonucleotide probes were immobilized in the side wall of thru-hole array. The fabricated ECL DNA biosensor was used to detect several pathogens using ECL technique. A good specificity of single point mutations for hepatitis disease was obtained by using the DAPI-intercalated Ru(bpy)(3)(2+) ECL.  相似文献   

13.
在玻碳电极上制备了碳纳米管负载纳米铂修饰电极(Pt-MWCNTs/GCE)。考察了联吡啶钌和富马酸酮替芬在3个不同电极上的电化学及其发光行为,并对其进行了对比。结果表明,在Pt-MWCNTs/GCE上富马酸酮替芬对联吡啶钌的电化学发光强度有明显的增敏作用,其增敏效果约为MWCNTs/GCE电极的2倍,约为裸玻碳电极的3.5倍,据此,建立了一种Pt-MWCNTs/GCE电极上电化学发光法检测富马酸酮替芬的新方法。在优化实验条件下,富马酸酮替芬的浓度在1.0×10-7~1.0×10-4mol/L范围内与其相对发光强度呈线性关系,线性回归方程为I=48.805×106c+221.03(r=0.9969),检出限为2.4×10-9mol/L,连续平行测定1.0×10-5mol/L的富马酸酮替芬溶液5次,发光强度的RSD为3.3%。对样品进行回收率实验,回收率为99%~104%,RSD为2.1%。  相似文献   

14.
赵丽  陶颖  陈曦 《化学学报》2006,64(4):320-324
通过电化学循环伏安法和电致化学发光方法, 研究了Ru(bpy)32+在玻碳电极上的吸附, 研究结果表明, Ru(bpy)32+的浓度和与玻碳材料接触的时间, 直接影响了Ru(bpy)32+在玻碳上的吸附. 还考察了吸附的 在玻碳电极上被氧化后脱附的情况.  相似文献   

15.
A solid‐state electrochemiluminescence (ECL) biosensor based on special ferrocene‐labeled molecular beacon (Fc‐MB) for highly sensitive detection of promyelocytic leukemia/retinoic acid receptor alpha (PML/RARα) fusion gene was developed successfully using Ru(bpy)${{{2+\hfill \atop 3\hfill}}}$ /2‐(dibutylamino)ethanol (DBAE) as detecting pattern. Such a special sensor involves two main parts, an ECL substrate and an ECL intensity switch. The ECL substrate was made by modifying the complex of Ruthenium (II) tris‐(bipyridine) and Au nanoparticles (Ru(bpy)${{{2+\hfill \atop 3\hfill}}}$ ‐AuNPs) onto the Au electrode (AuE) surface. The molecular beacon probe in which the ferrocene tag could effectively quench the ECL of the Ru(bpy)${{{2+\hfill \atop 3\hfill}}}$ acted as ECL intensity switch. The molecular beacon probe was designed with special base sequence, which could hybridize with its complementary target DNA. In the absence of a target, the hairpin structure of the probe forced the ferrocene (Fc) into close proximity with the ECL substrate, thus reducing ECL intensity. Target binding allowed the Fc away from the ECL substrate and resulted in an obvious increment in ECL intensity due to the decreased Fc quenching effect. The effect of the amount of Ru(bpy)${{{2+\hfill \atop 3\hfill}}}$ and the mixing procedure of Ru(bpy)${{{2+\hfill \atop 3\hfill}}}$ and AuNPs solution on the fabrication of ECL film had been investigated. As a result, the change of ECL intensity had a direct relationship with the logarithm of PML/RARα fusion gene concentration in the range of 0.05–500 pM with a detection limit of 7 fM, and the developed biosensor possessed good molecular recognizability in human serum. Thus, the approach holds promise for the early diagnostics and prognosis monitoring of APL and other diseases.  相似文献   

16.
Efficient and stable quenching of electrochemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(II) by oxidizing ferrocene methanol (FcMeOH) at the electrode is reported. Bimolecular energy or electron transfer between Ru(bpy)(3)(2+*) and ferrocenium (Fc(+)), the oxidized species of Fc, along with suppression of radical reactions is suggested as the mechanism for quenching ECL. Fc shows more efficient quenching of ECL compared with the known quenchers phenol and 1,1-dimethyl-4,4'-bipyridine dication (MV(2+)). The ECL quenching rate constant was 5.6 x 10(10) M(-)(1) s(-)(1). Using Fc as a quencher label on a complementary DNA sequence, an intramolecular ECL quenching in hybridized oligonucleotide strands has been realized. With essentially complete quenching efficiency, this system has the potential for application to sequence-specific DNA detection.  相似文献   

17.
The sofid-state ECL behavior of a water-insoluble bis-cyclometalated (pq)2Ir(N-phMA) complex is presented, in which pq is a 2-phenylquinoline anion and N-phMA is N-phenyl methacrylamide, a monoanionic bidentate ligand. The MWNTs/(pq)2Ir(N-phMA) film, MWNTs/Ru(bpy)32+ film and (pq)2Ir(N-phMA) directly modified glassy carbon electrode were fabricated; only the MWNTs/(pq)2Ir(N-phMA) film can produce steady ECL in the presence of tri-n-propylamine as a coreactant.  相似文献   

18.
An effective electrochemiluminescence (ECL) sensor based on Nafion/poly(sodium 4-styrene sulfonate) (PSS) composite film-modified ITO electrode was developed. The Nafion/PSS/Ru composite film was characterized by atomic force microscopy, UV-vis absorbance spectroscopy and electrochemical experiments. The Nafion/PSS composite film could effectively immobilize tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) via ion-exchange and electrostatic interaction. The ECL behavior of Ru(bpy)32+ immobilized in Nafion/PSS composite film was investigated using tripropylamine (TPA) as an analyte. The detection limit (S/N = 3) for TPA at the Nafion/PSS/Ru composite-modified electrode was estimated to be 3.0 nM, which is 3 orders of magnitude lower than that obtained at the Nafion/Ru modified electrode. The Nafion/PSS/Ru composite film-modified indium tin oxide (ITO) electrode also exhibited good ECL stability. In addition, this kind of immobilization approach was simple, effective, and timesaving.  相似文献   

19.
Chi Y  Xie J  Chen G 《Talanta》2006,68(5):1544-1549
The electrochemiluminescent (ECL) response of allopurinol was studied in aqueous media over a wide pH range (pH 2–13) using flow injection (FI) analysis. It was revealed that allopurinol itself had no ECL activity, but could greatly enhance the ECL of Ru(bpy)32+ in alkaline media giving rise to a sensitive FI-ECL response. The effects of experimental conditions including the mode of applied voltage signal, the potential of working electrode, pH value, the flow rate of carrier solution, and the concentration of Ru(bpy)32+ and allopurinol on the ECL intensity were investigated in detail. The most sensitive FI-ECL response of allopurinol was found at pH 12.0, where the FIA-ECL intensity showed a linear relationship with concentration of allopurinol in the range 1 × 10−8 mol L−1 to 5 × 10−7 mol L−1, and the detection limit was 5 × 10−9 mol L−1.  相似文献   

20.
《Analytical letters》2012,45(8):1255-1266
A solid-state [Ru(bpy)2(dppz)]2+ (bpy = 2,2′-bipyridine, dppz = dipyrido[3,2-a: 2′,3′-c]phenazine) electrochemiluminescence (ECL) biosensor for studying the binding interactions between pesticides of heterocyclic polycyclic aromatic hydrocarbon (heteroPAH) and natural double-stranded DNA (ds-DNA) was constructed. Layer-by-layer films of negatively charged natural ds-DNA and polycationic poly (diallyldimethylammonium chloride) (PDDA) were assembled on the surface of a glassy carbon electrode (GCE). The complex of [Ru(bpy)2(dppz)]2+ was used as a probe. Tripropylamine (TPA) was used as an electron donor to chemically amplify the ECL intensity of the probe. If the xenobiotic molecules compete with the probe for the same site on the DNA film, it would displace the probe from the DNA to decrease the ECL signal. The interactions of DNA with three pesticide molecules, quinalphos, quinclorac and carbendazim, were studied. From the displacement curve, the values of binding constant K b of three pesticides to DNA is determined, which is in the range of 0.5 × 104 to 2.3 × 104 M?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号