首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structures of methyl 3β‐acetoxy‐12‐oxo‐18β‐olean‐28‐oate [C33H52O5, (I)] and methyl 3β‐acetoxy‐12,19‐dioxoolean‐9(11),13(18)‐dien‐28‐oate [C33H46O6, (II)] are described. In (I), all rings are in the chair conformation, rings D and E are cis and the other rings trans‐fused. In compound (II), only rings A and E are in the chair conformation, ring B has a distorted chair conformation, ring C a distorted half‐boat and ring D an insignificantly distorted half‐chair conformation.  相似文献   

2.
3.
4.
Mixtures of 4‐carboxypyridinium perchlorate or 4‐carboxypyridinium tetrafluoroborate and 18‐crown‐6 (1,4,7,10,13,16‐hexaoxacyclooctadecane) in ethanol and water solution yielded the title supramolecular salts, C6H6NO2+·ClO4·C12H24O6·2H2O and C6H6NO2+·BF4·C12H24O6·2H2O. Based on their similar crystal symmetries, unit cells and supramolecular assemblies, the salts are essentially isostructural. The asymmetric unit in each structure includes one protonated isonicotinic acid cation and one crown ether molecule, which together give a [(C6H6NO2)(18‐crown‐6)]+ supramolecular cation. N—H...O hydrogen bonds between the protonated N atoms and a single O atom of each crown ether result in the 4‐carboxypyridinium cations `perching' on the 18‐crown‐6 molecules. Further hydrogen‐bonding interactions involving the supramolecular cation and both water molecules form a one‐dimensional zigzag chain that propagates along the crystallographic c direction. O—H...O or O—H...F hydrogen bonds between one of the water molecules and the anions fix the anion positions as pendant upon this chain, without further increasing the dimensionality of the supramolecular network.  相似文献   

5.
Crystal structures are reported for three isomeric compounds, namely 2‐(2‐hydroxy­phenyl)‐2‐oxazoline, (I), 2‐(3‐hydroxy­phenyl)‐2‐oxazoline, (II), and 2‐(4‐hydroxy­phenyl)‐2‐oxazoline, (III), all C9H9NO2 [systematic names: 2‐(4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenol, (I), 3‐(4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenol, (II), and 4‐(4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenol, (III)]. In these compounds, the deviation from coplanarity of the oxazoline and benzene rings is dependent on the position of the hydroxy group on the benzene ring. The coplanar arrangement in (I) is stabilized by a strong intra­molecular O—H⋯N hydrogen bond. Surprisingly, the 2‐oxazoline ring in mol­ecule B of (II) adopts a 3T4 (C2TC3) conformation, while the 2‐oxazoline ring in mol­ecule A, as well as that in (I) and (III), is nearly planar, as expected. Tetra­mers of mol­ecules of (II) are formed and they are bound together via weak C—H⋯N hydrogen bonds. In (III), strong inter­molecular O—H⋯N hydrogen bonds and weak intra­molecular C—H⋯O hydrogen bonds lead to the formation of an infinite chain of mol­ecules perpendicular to the b direction. This paper also reports a theoretical investigation of hydrogen bonds, based on density functional theory (DFT) employing periodic boundary conditions.  相似文献   

6.
We report that halogenophilic silver(I) triflate permits halogen exchange (halex) nucleophilic 18F‐fluorination of aryl‐OCHFCl, ‐OCF2Br and ‐SCF2Br precursors under mild conditions. This AgI‐mediated process allows for the first time access to a range of 18F‐labeled aryl‐OCHF2, ‐OCF3 and ‐SCF3 derivatives, inclusive of [18F]riluzole. The 18F‐labeling of these medicinally important motifs expands the radiochemical space available for PET applications.  相似文献   

7.
A new crown ether of 2,13‐dibenzothiazol‐2′‐yldibenzo[b,k]‐18‐crown‐6 was synthesized from 2,13‐diformyl‐ dibenzo[b,k]‐18‐crown‐6 with 2‐aminothiophenol. The binding behavior and the optical properties of the crown ether were examined through UV‐visible spectroscopy and fluorescence spectroscopy. When complexed with Na+, K+, Rb+ and Cs+ ions, it led to intramolecular charge transfer and caused the changes of the fluorescence spectra. The protonation of the crown ether was also studied.  相似文献   

8.
In the title hydrated adduct, 1,4,10,13‐tetraoxa‐7,16‐diazo­nia­cyclo­octa­decane bis(4‐amino­benzene­sulfonate) dihydrate, C12H28N2O42+·2C6H6NO3S·2H2O, formed between 7,16‐di­aza‐18‐crown‐6 and the dihydrate of 4‐amino­benzene­sulfonic acid, the macrocyclic cations lie across centres of inversion in the orthorhombic space group Pbca. The anions alone form zigzag chains, and the cations and anions together form sheets that are linked via water mol­ecules and anions to form a three‐dimensional grid.  相似文献   

9.
The title compound, C14H18INO, crystallizes as +sc/+sp/+sc 2‐iodoanilide molecules (and racemic opposites) and shows significant intermolecular I...O interactions in the solid state, forming dimeric pairs about centres of symmetry. Under asymmetric Heck conditions, the S enantiomer of the dihydroindol‐2‐one was obtained using (R)‐(+)‐2,2′‐bis(diphenylphosphino)‐1,1′‐binaphthyl [(R)‐BINAP], suggesting a mechanism that proceeds by oxidative addition to give the title (P) enantiomer of the compound and pro‐S coordination of the Re face of the alkene in a conformation similar to that defined crystallographically, except that rotation about the C—C bond of the butenyl group is required.  相似文献   

10.
The X‐ray crystal structure analyses of 3β‐hydroxy‐11‐oxo‐18α‐olean‐12‐en‐28‐oic acid methyl ester ethanol solvate, C31H48O4·C2H6O, (I), and 3,11‐dioxo‐18α‐olean‐12‐en‐28‐oic acid methyl ester, C31H46O4, (II), are described. These two compounds differ only in the structure of ring A. In (I), ring A has a chair conformation, while in (II), it has a twisted boat conformation. In both compounds, ring C has a slightly distorted sofa conformation, rings B, D and E are in chair conformations, and rings D and E are trans‐fused. The asymmetric unit of (I) contains one mol­ecule of ethanol linked by hydrogen bonds with two different mol­ecules of (I).  相似文献   

11.
5‐Diphenylphosphino‐2‐hydroxy‐1,3‐xylyl‐18‐crown‐5 has been synthesized from 5‐bromo‐2‐hydroxy‐18‐crown‐5 by reacting it in sequence at low temperature with n‐butyl lithium and methyl diphenylphosphonite. The phosphorous donor properties of this phenol phosphine (OH derivative) and the corresponding phenoxide (O? derivative) have been studied in the presence and absence of alkali metal ions by determining the frequencies of the A1 ν(CO) bands of Ni(CO)3L complexes. For the OH and O? derivatives, the latter generated by addition of CsOH to the former, the ν(CO) bands are observed at 2067.6 and 2063.4 cm?1, respectively, providing the trend predicted by Hammett parameters for OH and O? substituents. Addition of Na+ or K+ to the OH derivative has little effect on this stretching frequency, but the former ion shifts the O? derivative band to 2067.7 cm?1 A solid state structure has been obtained of the OH derivative, and two independent molecules were found in the unit cell. Both have a single water molecule hydrogen bonded to two across‐ring oxygen atoms and the phenol hydrogen. The crown ether ring has the usual gauche and anti arrangements for the C‐C and C? O bonds.  相似文献   

12.
Methyl 2‐acetamido‐2‐deoxy‐β‐d ‐glucopyranoside (β‐GlcNAcOCH3), (I), crystallizes from water as a dihydrate, C9H17NO6·H2O, containing two independent molecules [denoted (IA) and (IB)] in the asymmetric unit, whereas the crystal structure of methyl 2‐formamido‐2‐deoxy‐β‐d ‐glucopyranoside (β‐GlcNFmOCH3), (II), C8H15NO6, also obtained from water, is devoid of solvent water molecules. The two molecules of (I) assume distorted 4C1 chair conformations. Values of ϕ for (IA) and (IB) indicate ring distortions towards BC2,C5 and C3,O5B, respectively. By comparison, (II) shows considerably more ring distortion than molecules (IA) and (IB), despite the less bulky N‐acyl side chain. Distortion towards BC2,C5 was observed for (II), similar to the findings for (IA). The amide bond conformation in each of (IA), (IB) and (II) is trans, and the conformation about the C—N bond is anti (C—H is approximately anti to N—H), although the conformation about the latter bond within this group varies by ∼16°. The conformation of the exocyclic hydroxymethyl group was found to be gt in each of (IA), (IB) and (II). Comparison of the X‐ray structures of (I) and (II) with those of other GlcNAc mono‐ and disaccharides shows that GlcNAc aldohexopyranosyl rings can be distorted over a wide range of geometries in the solid state.  相似文献   

13.
5‐Azido‐2‐methoxy‐1,3‐xylyl‐18‐crown‐5 has been prepared by reacting p‐toluenesulfonyl azide with the carbanion generated from the reaction of 5‐bromo‐2‐methoxy‐1,3‐xylyl‐18‐crown‐5 with n‐butyl lithium. The asymmetric N3 stretch of this product has been observed as a single band at 2110 cm?1 in dichloromethane solution. Addition of solid NaSCN, KSCN and CsSCN shifts this band to 2115, 2113 and 2112 cm?1, respectively. Computational studies of this azide at the B3LYP‐6‐31G* level in the presence and absence of Na+ predicted these bands to be at 2173 cm?1 and 2184 cm?1. For the salt‐containing solutions, additional bands were observed at 2066 cm?1, 2056 cm?1 and 2055 cm?1, respectively, which are in the range expected for CN stretches. The X‐ray structure of this azide has been determined. The terminal and internal N? N bond lengths were found to be 1.127(2) and 1.245(2) Δ, respectively, which is the usual pattern for aromatic azides. The crown ether is looped over the face of the aromatic ring resulting in an angle of 38.94° between the plane defined by the aromatic ring and that defined by the five ring oxygen atoms. In addition, the CH3 group is rotated out of the plane of the phenyl ring with C1‐C18‐O181‐C182 and C17‐C18‐O181‐C182 dihedral angles of 93.81(14)° and ‐90.54(14)°, respectively.  相似文献   

14.
In the crystal structure of the title compound, C9H14N2O3, the molecules are linked by N—H?O=C bonds into chains parallel to [001]. Large crystals are readily obtained, presumably because of the hydrogen bonds and an energetically stable conformation of the mol­ecule.  相似文献   

15.
The structure of the title compound, C23H35NO4, contains a unique penta­cyclic ring system wherein one cyclo­hexyl ring adopts a chair conformation, two cyclo­hexyl rings are in boat conformations, and a six‐membered heterocyclic ring and a cyclo­pentyl ring are in envelope conformations. The structures of the lycoctamones, α,β‐unsaturated aldehydes produced by acid‐catalyzed degradation of lactams of lycoctonine‐type alkaloids, previously deduced from the results of extensive chemical investigations have been proven to be correct by the determination of the crystal structure of this compound.  相似文献   

16.
In the title compound 1 , the macrocylic ligand DB18C6 arranges to build two types of channels in which either only water or water and H3O+ molecules are stacked to linear polymers. The counter ions, I3, also form chains and fill in the spaces left between the parallel stacks of the crown ethers. Compound 1 should therefore possess interesting conducting properties and might as well serve as model for biological water channels.  相似文献   

17.
18.
The title compound, C22H17NO3, crystallizes in the monoclinic space group P21/c with four molecules per unit cell. The mol­ecules are arranged in centrosymmetric pairs, joined via the C and attached H atoms in the meta position relative to the methoxy group. These pairs are bonded in the crystalline phase as a result of non‐specific dispersive interactions, and through a network of C—H?O interactions involving the non‐bonded O atom of the carboxy group and, to some extent, the O atom of the methoxy group. The methoxy substituent lies in the plane of the almost planar acridine moiety and is directed towards the phenyl ester group. The phenyl ester group itself is twisted by 35.9 (5)° relative to the mean plane of the acridine moiety.  相似文献   

19.
In the title compounds, C12H12N2O2, (I), and C17H14N2O2, (II), respectively, the indole rings are planar and the vinyl groups lie out of the indole planes, making dihedral angles of 33.48 (5) and 41.31 (8)°, respectively. In (II), the dihedral angle between the phenyl and indole ring planes is 32.06 (6)°. In both mol­ecules, the double bond connecting the methyl­nitro­vinyl group and the indole nucleus adopts an E configuration. Notwithstanding the differences in space group [C2/c for (I) and P212121 for (II)], the mode of packing of compounds (I) and (II) is determined by similar inter­molecular N—H⋯O hydrogen‐bonding inter­actions, forming chains that run parallel to [101] in (I) and [001] in (II).  相似文献   

20.
Pb(18‐crown‐6)Cl2 and Hg(18‐crown‐6)I2 are obtained as transparent colourless crystals of needle and hexagonal shape, respectively, by isothermal evaporation of their dichloromethane solutions. Pb(18‐crown‐6)Cl2 crystallizes with the trigonal crystal system [ , no. 148, a = b = 1176.3(2), c = 1191.8(3) pm, V = 1428.2(5) 106·pm3, Z = 3] whereas Hg(18‐crown‐6)I2 crystallizes with the orthorhombic crystal system (Pnma, no. 62, a = 1613.9(2) pm, b = 2822.2(5) pm, c = 841.3(1) pm, V = 3832(1)106·pm3, Z = 8). Both compounds are characterized by linear MX2 (HgI2 or PbCl2) molecular units which are encrypted by the crown ether. In both cases, the divalent metal ion resides in the middle of the crown ether resulting in a hexagonal bipyramidal coordination environment for the metal cations. The molecular symmetry comes close to D3d. Hg(18‐crown‐6)I2 and Pb(18‐crown‐6)Cl2 differ in the way the single MX2@18‐crown‐6 units are packed. Whereas the Hg(18‐crown‐6)I2 molecules are arranged in a (distorted) cubic closest packing, the Pb(18‐crown‐6)Cl2 molecules adopt a hexagonal closest packing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号