首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study the flow field and the nanoparticle collection efficiency of supersonic/hypersonic impactors with different nozzle shapes were studied using a computational modeling approach. The aim of this study was to develop a nozzle design for supersonic]hypersonic impactors with the smallest possible cut-off size d5o and rather sharp collection efficiency curves. The simulation results show that the changes in the angle and width of a converging nozzle do not alter the cut-off size of the impactor; however, using a conical Laval nozzle with an L]Dn ratio less than or equal to 2 reduced d5o. The effect of using a cap as a focuser in the nozzle of a supersonic/hypersonic impactor was also investigated. The results show that adding a cap in front of the nozzle had a noticeable effect on decreasing the cut-off size of the impactor. Both fiat disks and conical caps were examined, and it was observed that the nozzle with the conical cap had a lower cut-off size.  相似文献   

2.
In this study the flow field and the nanoparticle collection efficiency of supersonic/hypersonic impactors with different nozzle shapes were studied using a computational modeling approach.The aim of this study was to develop a nozzle design for supersonic/hypersonic impactors with the smallest possible cut-off size d_(50) and rather sharp collection efficiency curves.The simulation results show that the changes in the angle and width of a converging nozzle do not alter the cut-off size of the impactor;however,using a conical Laval nozzle with an L/D_n ratio less than or equal to 2 reduced d_(50).The effect of using a cap as a focuser in the nozzle of a supersonic/hypersonic impactor was also investigated.The results show that adding a cap in front of the nozzle had a noticeable effect on decreasing the cut-off size of the impactor.Both flat disks and conical caps were examined,and it was observed that the nozzle with the conical cap had a lower cut-off size.  相似文献   

3.
Planar laser-induced fluorescence visualisation is used to investigate nonuniformities in the flow of a hypersonic conical nozzle. Possible causes for the nonuniformity are outlined and investigated, and the problem is shown to be due to a small step at the nozzle throat. Entrainment of cold boundary layer gas is postulated as the cause of the signal nonuniformity. PACS 47.80.Jk, 47.40.Ki, 47.60.+i  相似文献   

4.
A multigrid acceleration technique developed for solving the three-dimensional Navier–Stokes equations for subsonic/transonic flows has been extended to supersonic/hypersonic flows. An explicit multistage Runge–Kutta type of time-stepping scheme is used as the basic algorithm in conjunction with the multigrid scheme. Solutions have been obtained for a blunt conical frustum at Mach 6 to demonstrate the applicability of the multigrid scheme to high-speed flows. Computations have also been performed for a generic High-Speed Civil Transport configuration designed to cruise at Mach 3. These solutions demonstrate both the efficiency and accuracy of the present scheme for computing high-speed viscous flows over configurations of practical interest.  相似文献   

5.
The cloud of products formed following the detonation of lead azide (LA) contains gaseous species and solid particles. The dynamics of the detonation products expanding freely or through a supersonic nozzle into vacuum is unraveled via the temporal profiles of the pressure, the emission from Pb atoms and the attenuation of a He-Ne beam. The velocity of the fastest gaseous species is found from the onset of the pressure rise and the emission at a given distance from the LA sample, and the velocity of the fastest solid particles from the attenuation. In the free expansion, the respective velocities are 4.5±0.1 and 3.8±0.2 km/s and in the nozzle expansion 5.1±0.2 and 1.4±0.2 km/s. The expansion into atmospheric pressure air is also monitored and found to be much slower than that into vacuum. The utilization of nozzles as a means for obtaining a particle free, transparent medium of detonation products is stressed in the context of exploiting explosives for achieving chemical lasers in the visible wavelength region.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

6.
Murata vortex spinning (MVS) is a recently developed spinning technology which utilizes high speed swirling airflow to insert twist into the yarn. The motional characteristics of the flexible fibers in the airflow inside the MVS nozzle are of vital importance to the yarn formation mechanism and properties. The fiber motion in the MVS nozzle involves fluid-structure interaction (FSI) and contact problems. In this paper, a two-dimensional FSI model combined with the fiber-wall contact is introduced to simulate a single fiber moving in the airflow inside the MVS nozzle. The model is solved using a finite element code ADINA. Based on the model, the motional characteristics of the fiber are analyzed and the effect of two process parameters - the nozzle pressure and yarn delivery speed - on the fiber motion and, in turn, the yarn tenacity is discussed. The results indicate that the fiber firstly undergoes a false-twisting process. Subsequently, its trailing end splays out and whirls within the nozzle chamber for several turns to helically wrap and make the spun yarn. The results also show that the effect of the nozzle pressure on the tenacity of the produced MVS yarn is not obvious. The increased yarn delivery speed leads to the decreased MVS yarn tenacity. The numerical results show good agreement with the experimental results provided by other researchers.  相似文献   

7.
The paper discusses flat plate boundary layer transition in supersonic/hypersonic flow conditions. Examination of experimental infrared thermography data illustrates the importance of the leading edge thickness and (non-) uniformity to the transition process. Such observations have triggered the collection of a wide range of experimental data on supersonic/hypersonic flat plate boundary layer transition, and a number of attempts to correlate this data with characteristic parameters including leading edge thickness. Results indicate a strong dependence of the relevant transition parameters on the pressure field in the transition region, as this is determined by the combined effects of leading edge thickness and boundary layer growth/viscous interaction, and particularly on the relative importance of the two effects. In fact, two distinct correlation zones are established, depending on whether the pressure distribution at the onset of transition is dominated by leading edge bluntness effects or by boundary layer growth and viscous interaction, thus limiting the observed data scatter to reasonable levels.Received: 13 August 2002, Accepted: 7 February 2003, Published online: 28 April 2003  相似文献   

8.
The two-layer modeling approach has become one of the most promising and successful methodology for simulating turbulent boundary layers in the past ten years. In the present study, a mixed wall model for large-eddy simulations (LES) of high-speed flows is proposed which combine two approaches; the thin-Boundary Layer Equations (TBLE) model of Kawai and Larsson (1994) and the analytical wall-layer model of Duprat et al. (2011) for streamwise pressure gradients. The new hybrid model has been efficiently implemented into a three-dimensional compressible LES solver and validated against DNS of a spatially-evolving supersonic boundary layer (BL) under moderate and strong pressure gradients, before being employed for the prediction of nozzle flow separations at different flow conditions, ranging from weakly to highly over-expanded regimes. A good agreement is obtained in terms of mean and fluctuating quantities compared to the DNS results. Particularly, the current wall-modeled LES results are found to perfectly match the DNS data of supersonic BL with/out pressure gradient. It is also shown that the model can account for the effect of the large-scale turbulent motions of the outer layer, indicating a good interaction between the inner and the outer part of the wall layer. In terms of simulations costs and improvements of computing power, the obtained results highlight the capability of the current wall-modeling LES strategy in saving a considerable amount of computational time compared to the wall-resolved LES counterpart, allowing to push further the simulations limits. Furthermore, the application of these computationally low-costly LES simulations to nozzle flow separation allows to clearly identify the origin of the shock unsteadiness, and the existence of broadband and energetically-significant low-frequency oscillations (LFO) in the vicinity of the separation region.  相似文献   

9.
Simulation of the Mach reflection in supersonic flows by the CE/SE method   总被引:1,自引:0,他引:1  
This study employs the Space-Time Conservation Element and Solution Element (CE/SE) method to determine the influence of downstream flow conditions on Mach stem height. The results indicate that the Mach stem height depends on the incident shock wave angle and the distance between the trailing edge and the symmetry plane. Furthermore, it is shown that the downstream length ratio and the trailing edge angle do not affect the Mach stem height nor the Mach reflection (MR) configuration, and the Space-Time Conservation Element and Solution Element method is able to simulate the MR as well as many other numerical schemes. Communicated by K. Takayama PACS 47.40.Nm  相似文献   

10.
High velocity impinging air jets are commonly used for heating, cooling and drying, etc. because of the high heat and mass transfer coefficients which are developed in the impingement region. In order to provide data for the designers of industrial equipment, a variety of slot nozzles were tested to determine the effect on heat transfer of both nozzle shape and slot width. A large multi-nozzle rig was also used to measure average heat and mass transfer characteristics under arrays of both slot nozzles and circular holes. As a necessary preliminary to the heat transfer investigation, the discharge coefficients of the nozzles were measured. Then, the experimental results are compared with the simplified flow model. A good agreement was found between the theoretical and experimental results. From the tests, it was also found that the heat transfer results from differently shaped nozzles could be satisfactorily correlated provided that the effective slot width or hole diameter was used to characterize the nozzle shapes.  相似文献   

11.
The condensation of supersonic steam jet submerged in the quiescent subcooled water was investigated experimentally. The results indicated that the shape of steam plume was controlled by the steam exit pressure and water temperature. Six different shapes of steam plume were observed under the present test conditions. Their distribution as a function of the steam exit pressures and water temperatures was given. As the steam mass velocity and water temperature increase, the measured maximum expansion ratio and dimensionless penetration length of steam plume were in the ranges of 1.08–1.95 and 3.05–13.15, respectively. The average heat transfer coefficient of supersonic steam jet condensation was found to be in the range of 0.63–3.44 MW/m2K. An analytical model of steam plume was found and the correlations to predict the maximum expansion ratio, dimensionless penetration length and average heat transfer coefficient were also investigated.  相似文献   

12.
We study here effects of nozzle layout on the droplet ejection of a micro atomizer, which was fabricated with the arrayed nozzles by the MEMS technology and actuated by a piezoelectric disc. A theoretical model was first built for this piezoelectric-liquid-structure coupling system to characterize the acoustic wave propagation in the liquid chamber, which determined the droplet formation out of nozzles. The modal analysis was carried out numerically to predict resonant frequencies and simulate the corresponding pressure wave field. By comparing the amplitude contours of pressure wave on the liquid-solid interface at nozzle inlets with the designed nozzle layout, behaviors of the device under different vibration modes can be predicted. Experimentally, an impedance analyzer was used to measure the resonant frequencies of the system. Three types of atomizers with different nozzle layouts were fabricated for measuring the effect of nozzle distribution on the ejection performance. The visualization experiment of droplet generation was carried out and volume flow rates of these devices were measured. The good agreement between the experiment and the prediction proved that only the increase of nozzles may not enhance the droplet generation and a design of nozzle distribution from a viewpoint of frequency is necessary for a resonant related atomizer. The project supported by the National Natural Science Foundation of China (50405001).  相似文献   

13.
14.
Studies on the unphysical increase of turbulent quantities for RANS simulation induced by shock waves in hypersonic flows are carried out. Numerical experiments on the hypersonic flow over a blunt body reveal that the phenomenon of unphysical increase of turbulent quantities across the detached shock wave is induced by the strain-rate-based production terms of the k-ω $$ \omega $$ and k-ω $$ \omega $$ SST turbulence models, which leads to the over-prediction of aerothermal prediction. While this phenomenon does not occur for Spalart–Allmaras (S–A) turbulence model because of its vorticity-based production term. In order to eliminate this unphysical phenomenon, and to maintain the accuracy of the original models for boundary layer and separation flows, a new correction method for the k-ω $$ \omega $$ and k-ω $$ \omega $$ SST models is proposed: by comparing the orders of magnitude between the strain-rate-based and vorticity-based production terms, the vorticity-based production term is used near the shock waves, while the original strain-rate-based production term is still used in other regions. Finally, the correction method is applied to turbulence and transition flows over blunt bodies, and the numerical results show that the correction method effectively eliminates the unphysical increase of turbulent quantities across shock waves and improves the accuracy of aerothermal and transition onset location prediction.  相似文献   

15.
About a decade after its foundation, the most advanced ballistics laboratory in Germany at the time, the Kruppsche Schiessplatz, was utilized by Ernst Mach in 1888. His intent was to validate his pioneering shock wave research using military shells as supersonic vehicles. The 125th anniversary of the Schiessplatz was celebrated in 2002. Along with Machs research, it served to initiate the field of supersonic transportation technology. The specific subject of this paper is the application of point-source spark shadowgraphy at the same laboratory in the 1970s to visualize gas flow over aeroballistic projectiles. However, different from Machs original interest, the new purpose of spark photography at that time in the ballistic ranges of the German Bundeswehr was to find technical solutions to aeroballistic problems when field-testing gave incomplete answers. Both a qualitative and a quantitative understanding of the principles of aeroballistics were sought in this research.Received: 3 February 2003, Accepted: 30 June 2003, Published online: 2 September 2003An abridged version of this paper was presented at the 13th American Physical Society Topical Conference on Shock Compression of Condensed Matter at Portland, Oregon, from July 20 to 25, 2003  相似文献   

16.
The synthesis of magnetic spinel ferrites at the nanoscale is a field of intense study, because the mesoscopic properties enable their novel applications. Spinel nanoparticles have a promising role because of their extraordinary properties compared with those of micro and macro scale particles. Several colloidal chemical synthetic procedures have been developed to produce monodisperse nanoparticles of spinel ferrites and other materials using sol–gel, co-precipitation, hydrothermal, and microemulsion techniques. To improve the synthesis method and conditions, quality and productivity of these nanoparticles, understanding the effect of extrinsic (pH, temperature, and molecular concentration) and intrinsic parameters (site preferences, latent heat, lattice parameters, electronic configuration, and bonding energy) on the particle size during synthesis is crucial. In this review, we discuss the effect of the intrinsic parameters on particle size of spinel ferrites to provide an insight to control their particle size more precisely.  相似文献   

17.
The gas temperature within hypersonic boundary layer flow is so high that the specific heat of gas is no longer a constant but relates to temperature. How variable specific heat influences on boundary layer flow stability is worth researching. The effect of the variable specific heat on the stability of hypersonic boundary layer flows is studied and compared with the case of constant specific heat based on the linear stability theory. It is found that the variable specific heat indeed has some effects on the neutral curves of both the first-mode and the second-mode waves and on the maximum rate of growth also. Therefore, the relationship between specific heat and temperature should be considered in the study of the stability of the boundary layer.  相似文献   

18.
Laser performance is greatly dependent on its operating conditions due to the strong coupling among multi- physics such as gas-dynamics, chemical reaction kinetics and optics in the mixing nozzle of COIL. In this paper, 3D CFD technology is used to simulate the mixing and reactive flow of subsonic cross jet scheme at different conditions. Results obtained show that the jet penetration depth plays a dominant role in the spatial distribution of small signal gains. In the case of over-penetration, unsteady flow structures are induced by impinging between the opposing jets. The optimum spatial distribution of the chemical performance cannot be obtained even if the full penetration condition is achieved through the subsonic transverse jet mixing scheme in the COIL nozzle flow.  相似文献   

19.
针对某高超声速舵面颤振风洞试验模型开展了数值模拟研究,采用多种气动力模型和耦合迭代策略,研究对颤振预测结果的影响。计算结果表明,采用三阶活塞理论、统一升力面理论、Euler方程和N-S方程的颤振动压预测结果较接近,与试验值误差均在7%以内。采用时域方法计算时,松耦合方法的误差较大,超过15%。同时还发现,支撑机构会带来激波边界层干扰效应,一定程度上提高了颤振动压,考虑该因素的预测结果与试验值更接近。  相似文献   

20.
Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 1, pp. 65–70, January–February, 1992.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号