首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfone-based electrolytes have been investigated as electrolytes for lithium-ion cells using high-voltage positive electrodes, such as LiMn2O4 and LiNi0.5Mn1.5O4 spinels, and Li4Ti5O12 spinel as negative electrode. In the presence of imide salt (LiTFSI) and ethyl methyl sulfone or tetramethyl sulfone (TMS) electrolytes, the Li4Ti5O12/LiMn2O4 cell exhibited a specific capacity of 80 mAh g?1 with an excellent capacity retention after 100 cycles. In a cell with high-voltage LiNi0.5Mn1.5O4 positive electrode and 1 M LiPF6 in TMS as electrolyte, the capacity reached 110 mAh g?1 at the C/12 rate. When TMS was blended with ethyl methyl carbonate, the Li4Ti5O12/LiNi0.5Mn1.5O4 cell delivered an initial capacity of 80 mAh g?1 and cycled fairly well for 1000 cycles under 2C rate. The exceptional electrochemical stability of the sulfone electrolytes and their compatibility with the Li4Ti5O12 safer and stable anode were the main reason behind the outstanding electrochemical performance observed with high-potential spinel cathode materials. These electrolytes could be promising alternative electrolytes for high-energy density battery applications such as plug-in hybrid and electric vehicles that require a long cycle life.  相似文献   

2.
Nano-sized nickel ferrite (NiFe2O4) was prepared by hydrothermal method at low temperature. The crystalline phase, morphology and specific surface area (BET) of the resultant samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and nitrogen physical adsorption, respectively. The particle sizes of the resulting NiFe2O4 samples were in the range of 5–15 nm. The electrochemical performance of NiFe2O4 nanoparticles as the anodic material in lithium ion batteries was tested. It was found that the first discharge capacity of the anode made from NiFe2O4 nanoparticles could reach a very high value of 1314 mAh g−1, while the discharge capacity decreased to 790.8 mAh g−1 and 709.0 mAh g−1 at a current density of 0.2 mA cm−2 after 2 and 3 cycles, respectively. The BET surface area is up to 111.4 m2 g−1. The reaction mechanism between lithium and nickel ferrite was also discussed based on the results of cycle voltammetry (CV) experiments.  相似文献   

3.
This paper reports the microwave-assisted synthesis of Co3O4 nanomaterials with different morphologies including nanoparticles, rod-like nanoclusters and macroporous platelets. The new macroporous platelet-like Co3O4 morphology was found to be the best suitable for reversible lithium storage properties. It displayed superior cycling performances than nanoparticles and rod-like nanoclusters. More interestingly, excellent high rate capabilities (811 mAh g?1 at 1780 mA g?1 and 746 mAh g?1 at 4450 mA g?1) were observed for macroporous Co3O4 platelet. The good electrochemical performance could be attributed to the unique macroporous platelet structure of Co3O4 materials.  相似文献   

4.
A spinel Li4Ti5O12 nanoplatelet/reduced graphite oxide nano-hybrid was successfully synthesized by a two-step microwave-assisted solvothermal reaction and heat treatment. The Li4Ti5O12 in the hybrid could deliver a discharge capacity of 154 mAhg? 1 of Li4Ti5O12 at 1 C-rate, 128 mAhg-1 of Li4Ti5O12 at 50 C-rate and 101 mAhg-1 of Li4Ti5O12 at 100 C-rate. It demonstrated promising potential as an anode material in a Li-ion battery with excellent rate capability and good cycling.  相似文献   

5.
LiCo1−xMgxPO4–graphitic carbon foam (LCMP–GCF with 0 ≤ x ≤ 0.1) composites are prepared by Pechini-assisted sol-gel method and annealed with the 2-steps annealing process (T = 300 °C for 5 min in flowing air, then at T = 730 °C for t = 12 h in flowing nitrogen). The XRD analysis, performed on powders reveals LiCoPO4 as major crystalline phase, Co2P and Co2P2O7 as secondary phases. The morphological investigation revealed the formation and growth of microcrystalline “islands” which consist of acicular crystallites with different dimensions (typically 5–50 μm). By addition of Mg-ions, CV-curves of LCMP–GCF composites show a decrease of the surface between anodic and cathodic sweeps by cycling and a stark contribution of faradaic processes due to the graphitic structured foam. The electrochemical measurements, at a discharge rate of C/10 at room temperature, show the decrease of the discharge specific capacity from 100 mAh g−1 for x = 0.0 to ∼35 mAh g−1 for 0.025 ≤ x ≤ 0.05, then an increase to 69 mAh g−1 for x = 0.1. The electrochemical impedance spectroscopy data reveal a decrease of the electrical resistance and the improvement of the Li-ion conductivity at high Mg-ions content into the LiCoPO4 phase (x ≥ 0.025).  相似文献   

6.
Lithium insertion into various iron vanadates has been investigated. Fe2V4O13 and Fe4(V2O7)3 · 3H2O have discharge capacities approaching 200 mAh g−1 above 2.0 V vs. Li+/Li. Although the potential profiles change significantly between the first and subsequent discharges, capacity retention is unexpectedly good. Other phases, structurally related to FeVO4, containing copper and/or sodium ions were also studied. One of these, β-Cu3Fe4(VO4)6, reversibly consumes almost 10 moles of electrons per formula unit (ca. 240 mAh g−1) between 3.6 and 2.0 V vs. Li+/Li, in a non-classical insertion process. It is proposed that both copper and vanadium are electrochemically active, whereas iron(III) reacts to form LiFeIIIO2. The capacity of the Cu3Fe4(VO4)6/Li system is nearly independent of cycling rate, stabilizing after a few cycles at 120–140 mAh g−1. Iron vanadates exhibit better capacities than their phosphate analogues, whereas the latter display more constant discharge potentials.  相似文献   

7.
A disordered rocksalt Li-excess cathode material, Li1.25Nb0.25Mn0.5O2, was synthesized and investigated. It shows a large initial discharge capacity of 287 mAh g 1 in the first cycle, which is much higher than the theoretical capacity of 146 mAh g 1 based on the Mn3+/Mn4+ redox reaction. In situ X-ray diffraction (XRD) demonstrates that the compound remains cation-disordered during the first cycle. Electron energy loss spectroscopy (EELS) suggests that Mn and O are likely to both be redox active, resulting in the large reversible capacity. Our results show that Li1.25Nb0.25Mn0.5O2 is a promising cathode material for high capacity Li-ion batteries and that reversible oxygen redox in the bulk may be a viable way forward to increase the energy density of lithium-ion batteries.  相似文献   

8.
Microarray electrodes of LiMn2O4 and Li4/3Ti5/3O4 were prepared on a glass substrate using a sol–gel method. The prepared LiMn2O4 and Li4/3Ti5/3O4 microarray electrodes were characterized with scanning electron microscopy, Raman spectroscopy, and cyclic voltammetry. Using a polymer-gel electrolyte, lithium ion microbattery of Li4/3Ti5/3O4/polymer-gel/LiMn2O4 (cell area: 6.6 × 10−2 cm2) was successfully constructed. The microbattery operated reversibly at 2.5 V, and the discharge capacity was 300 nA h, which corresponded to an energy density of 11 μW h cm−2.  相似文献   

9.
In this paper, flower-like spinel Li4Ti5O12 consisting of nanosheets was synthesized by a hydrothermal process in glycol solution and following calcination. The as-prepared product was characterized by scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction and cyclic voltammetry. The capacity of the sample used as anode material for lithium ion battery was measured. This structured Li4Ti5O12 exhibited a high reversible capacity and an excellent rate capability of 165.8 m Ahg−1 at 8 C, indicating potential application for lithium ion batteries with high rate performance and high capacity.  相似文献   

10.
Flexible, free-standing, paper-like, graphene-silicon composite materials have been synthesized by a simple, one-step, in-situ filtration method. The Si nanoparticles are highly encapsulated in a graphene nanosheet matrix. The electrochemical results show that graphene-Si composite film has much higher discharge capacity beyond 100 cycles (708 mAh g? 1) than that of the cell with pure graphene (304 mAh g? 1). The graphene functions as a flexible mechanical support for strain release, offering an efficient electrically conducting channel, while the nanosized silicon provides the high capacity.  相似文献   

11.
This work aims to maximize the number of active sites for energy storage per geometric area, by approaching the investigation to 3D design for microelectrode arrays. Self-organized Li4Ti5O12/TiO2/Li3PO4 composite nanoforest layer (LTL) is obtained from a layer of self organized TiO2/Li3PO4 nanotubes. The electrochemical response of this thin film electrode prepared at 700 °C exhibited lithium insertion and de-insertion at 1.55 and 1.57 V respectively, which is the typical potential found for lithium titanates. The effects of lithium phosphate on lithium titanate are explored for the first time. By cycling between 2.7 and 0.75 V the LTL/LiFePO4 full cell delivered 145 mA h g 1 at an average potential of 1.85 V leading to an energy density of 260 W h kg 1 at C/2. Raman spectroscopy revealed that the γ-Li3PO4/lithium titanate structure is preserved after prolonged cycling. This means that Li3PO4 plays an important role for enhancing the electronic conductivity and lithium ion diffusion.  相似文献   

12.
The effect of Li doping in spinel Li4+xTi5−xO12 (0  x  0.2) materials on the structural and electrochemical properties were investigated. The ratio of the capacity in the voltage plateau (1.5 V) to the overall discharge capacity for Li4.1Ti4.9O12 (x = 0.1) and Li4.2Ti4.8O12 (x = 0.2) were higher than that of Li4Ti5O12 especially at high current rates due to their enhanced lithium-ion and electronic conductivity by the substitution of Ti atoms by Li atoms. With the increasing of Li doping amount, lithium-ion and electronic conductivity of Li4+xTi5−xO12 increased, however its cycling stability was depressed when the Li doping was of x = 0.2. The Li doping of x = 0.1, the appropriate Li doping amount, showed improved rate capability and better high rate performance comparing to undoped Li4+xTi5−xO12 (x = 0).  相似文献   

13.
We report a one-step synthesis of a nanocomposite of goethite (α-FeOOH) nanorods and reduced graphene oxide (RGO) using a solution method in which ferrous cations serve as a reducing agent of graphite oxide (GO) to graphene and a precursor to grow goethite nanorods. As-prepared goethite nanorods have an average length of 200 nm and a diameter of 30 nm and are densely attached on both sides of the RGO sheets. The electrochemical properties of the nanocomposite were characterized by cyclic voltammetry (CV) and chronopotentiometry (CP) charge–discharge tests. The results showed that goethite/RGO composites have a high electrochemical capacitance of 165.5 F g?1 with an excellent recycling capability making the material promising for electrochemical capacitors.  相似文献   

14.
Cycling stability, reversible capacity and rate performance of Li4Ti5O12 discharged to 0.01 V were investigated. A couple of obvious and repeatable peaks under 0.6 V observed by CV indicated that Li4Ti5O12 possessed reversible capacity below 0.6 V. When discharge voltage of Li4Ti5O12 extended from 0.6 to 0.01 V, its cycling stability was not affected and its reversible capacity and high rate performance were improved. Although the capacity obtained from 2.0 to 0.6 V gradually decreased with increasing the applied current density, the capacity obtained from 0.6 to 0.01 V showed little loss. AB was both electronic conducting additive and lithium-ion conducting additive for Li4Ti5O12 under 0.6 V.  相似文献   

15.
Structural and electronic properties of Li4Ti5O12 spinel are studied from density functional theory based first principles calculations. Differences on these properties between delithiated state Li4Ti5O12 and lithiated state Li7Ti5O12 are compared. The optimized lattice constant of Li4Ti5O12 is 8.619 Å, which is even a little larger (0.2%) than 8.604 Å of the lithiated state Li7Ti5O12. The arrangement of the Li and Ti atoms at the 16d sites of the spinel structure is also investigated in a cubic unit cell. Large 1 × 1 × 3 supercell models are constructed and used to calculate the total energy and electronic structure. The average intercalation potential is also calculated, with metallic lithium as reference.  相似文献   

16.
Core-shell Cu2O/Cu composites were successfully prepared by over-reduction of aqueous CuSO4 with hydrazine hydrate as reductant. Field emission scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) clearly illuminate that the core is Cu2O with 400 nm in diameter, and the shell is Cu with about 50 nm in thickness. The core-shell Cu2O/Cu exhibited weaker polarization and higher coulombic efficiency than pure octahedral Cu2O, especially in the initial stage of cycles. After 50 cycles, the reversible capacity of Cu2O/Cu (360 mAh g?1) was much higher than that of pure Cu2O (160 mAh g?1). The improvement of electrochemical properties is attributed to the core-shell structure of Cu2O/Cu and the catalytic effect of Cu on the decomposition of Li2O during the charging process.  相似文献   

17.
One-dimensional (1-D) carbon nanofibers anchored with partially reduced SnO2 nanoparticles (SnO2/Sn@C) were successfully synthesized through a simple electrospinning method followed by carbon coating and thermal reduction processes. The partially reduced Sn frameworks, combined with the carbon fibers, provide a more favorable mechanism for sodiation/desodiation than SnO2. As a result, SnO2/Sn@C exhibits a high reversible capacity (536 mAh g 1 after 50 cycles) and an excellent rate capability (396 mAh g 1 even at 2 C rate) when evaluated as an anode material for sodium-ion batteries (SIBs).  相似文献   

18.
NiCo2O4 nanosheets supported on Ni foam were synthesized by a solvothermal method. A composite of NiCo2O4 nanosheets/Ni as a carbon-free and binder-free air cathode exhibited an initial discharge capacity of 1762 mAh g 1 with a low polarization of 0.96 V at 20 mA g 1 for sodium–air batteries. Na2O2 nanosheets were firstly observed as the discharged product in sodium–air battery. High electrocatalytic activity of NiCo2O4 nanosheets/Ni made it a promising air electrode for rechargeable sodium–air batteries.  相似文献   

19.
SnO2@ZnO was synthesized by a new method involving the immobilization of Sn onto zeolitic imidazolate framework-8 (ZIF-8) followed by calcination. The synthesized nanoparticles were characterized as 20–30 nm spherical ZnO particles uniformly dotted with SnO2. When SnO2@ZnO were used as anode material for Zn/Ni batteries, the average specific capacity was approximately 600 mAh g 1 and remained stable after 150 cycles at a rate of 1 C.  相似文献   

20.
The amorphous Mg–Al–Ni composites were prepared by mechanical ball-milling of Mg17Al12 with x wt.% Ni (x = 0, 50, 100, 150, 200). The effects of Ni addition and ball-milling parameters on the electrochemical hydrogen storage properties and microstructures of the prepared composites have been investigated systematically. For the Mg17Al12 ball-milled without Ni powder, its particle size decreases but the crystal structure does not change even the ball-milling time extending to 120 h, and its discharge capacity is less than 15 mAh g?1. The Ni addition is advantageous for the formation of Mg–Al–Ni amorphous structure and for the improvement of the electrochemical characteristics of the composites. With the Ni content x increasing, the composites exhibit higher degree of amorphorization. Moreover, the discharge capacity of the composite increases from 41.3 mAh g?1 (x = 50) to 658.2 mAh g?1 (x = 200) gradually, and the exchange current density I0 increases from 67.1 mA g?1 (x = 50) to 263.8 mA g?1 (x = 200), which is consistent with the variation of high-rate dischargeability (HRD). The ball-milled Mg17Al12 + 200 wt.% Ni composite has the highest cycling discharge capacity in the first 50 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号