首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fixed-bed reactors randomly packed with catalysts have many disadvantages that may adversely affect the desired chemical reaction.The increasingly used monolithic reactor,in contrast,has many operational advantages;however,for a kinetically-controlled reaction,it does not contain sufficient catalyst to sustain the reaction.To address the problems associated with both randomly packed-bed reactor and the monolithic reactor,a structured packed-bed reactor was proposed and mathematical models were built for randomly packed-bed reactor and structured packed-bed reactor.Their respective performances were compared when applied to the exothermic reaction of the isopropanol-acetone-hydrogen chemical heat pump system.The results showed that the structured packed-bed reactor performed better in terms of pressure drop and heat transfer capacity,and had a lower radial temperature gradient,indicating that this reactor had a higher effective heat conductivity.Isopropanol on the catalyst particle surfaces was more concentrated near the tube wall because a wall effect existed in the boundary layer around the particle-wall contact points.  相似文献   

2.
朱张平  郭雪岩 《力学季刊》2015,36(3):451-457
基于Chimera网格采用有限体积法模拟了450个颗粒随机填充固定床中的化学链燃烧的氧化反应过程,并采用三维瞬态N-S方程,结合压力Poisson方程方法,详细分析了床层入口Re=5时的颗粒内部和外部的传质传热过程.模拟结果揭示了在大颗粒的固定床中,颗粒内部有效扩散系数对颗粒内部的传质起着决定性作用,而且颗粒表面的浓度梯度决定了总反应速率;另外,有惰性芯的结构化颗粒能有效地改善颗粒内部总的反应速率,颗粒的转化速率,并且能使床层很快地达到热平衡.模拟结果能更好地帮助我们认识固定床化学链反应器中的反应和组分传递机理.  相似文献   

3.
Plug-flow reactors are very common in methane/steam reforming applications. Their operation presents many challenges, such as a strong dependence on temperature and inlet composition distribution. The strong endothermic steam reforming reaction might result in a temperature drop at the inlet of the reactor. The strong non-uniform temperature distribution due to an endothermic chemical reaction can have tremendous consequences on the operation of the reactor, such as catalyst degradation, undesired side reactions and thermal stresses. One of the possibilities to avoid such unfavorable conditions and control thermal circumstances inside the reforming reactor is to use it as a fuel processor in the solid oxide fuel cell (SOFC) system. The heat generated by exothermic electrochemical SOFC reactions can support the endothermic reforming reaction. Furthermore, the thermal effects of electrochemical reactions help to shape the uniform temperature distribution. To examine thermal management issues, a detailed modeling and corresponding numerical analyses of the phenomena occurring inside the internal reforming system is required. This paper presents experimental and numerical studies on the methane/steam reforming process inside a plug-flow reactor. Measurements including different thermal boundary conditions, the fuel flow rate and the steam-to-methane ratios were performed. The reforming rate equation derived from experimental data was used in the numerical model to predict gas composition and temperature distribution along the steam reforming reactor. Finally, an attempt was made to control the temperature distribution by adopting locally controlled heating zones and non-uniform catalyst density distributions.  相似文献   

4.
等离子体氯化氧化法太白反应器流场的数值模拟   总被引:1,自引:0,他引:1  
本文提出了等离子体氯化氧化法钛白反应器流程的物理化学流体动力学模型,用k-ε方程描述湍流运动,用Partankar-spalaing发展的SIMPLER方法对控制方程求解,就三种情况即a)有化学反应,壁面绝热,b)有化学反应,壁面温度T_w=450k,c)无化学反应,壁面绝热,给出了反应器中的速度场,温度场和浓度分布,对钛白生产的物理化学过程作了数值模拟,所得结果可作为有关工程设计的理论依据。  相似文献   

5.
An adiabatic reactor with continuous flow and with a stationary fine-grained catalyst layer is examined. The mixture which passes through this layer undergoes chemical reaction on the surface of the grains. The reaction there is accompanied by liberation of heat and change in the concentration of the mixture with subsequent heat and mass exchange between this surface and the flow. The rate of the reaction depends on the temperature and concentration of the reagents, in which the relationship to the temperature is markedly nonlinear.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 153–159, July–August, 1970.  相似文献   

6.
7.
Numerical study using computational fluid dynamics has been carried out to investigate the heat transfer characteristics of a laboratory fluidized bed reactor. The fluidized bed reactor of vTI (Johann Heinrich von Thünen-Institute)-Institute of Wood Technology and Wood Biology is modeled. For the simulation of multiphase flow and thermal fields, an Eulerian–Eulerian approach is applied. The flow and thermal characteristics of the reactor are fully investigated for the wide range of superficial gas velocities and two different particle diameters. In particular, the contributions of the gas bubble and emulsion phase flows on the wall heat transfer are scrutinized. From the predicted results, it is fully elucidated that particular near-wall bubble motions mainly govern the wall heat transfer.  相似文献   

8.

本文采用计算流体力学–离散单元法耦合热化学和多分散曳力子模型,对鼓泡流化床反应器内生物质气化过程进行了数值模拟研究。在进行了模型验证后,讨论了关键操作参数对颗粒尺度信息(如颗粒运动、混合、传热)和反应器性能的影响。结果表明,在生物质气化过程中,对流传热起主导作用,其次是辐射传热和反应热,传导传热所占比例最小。提高操作温度和生物质/水蒸气比可以促进传热过程和化学反应的进行。

  相似文献   

9.
Jesse Zhu   《Particuology》2010,8(6):640-644
While circulating fluidized bed (CFB) reactor has many advantages over the more conventional turbulent fluidized bed (TFB) reactor, it does at least have one significant shortcoming-the rather dilute solids volume concentration in CFB reactor gives rise to less ideal reaction intensity. On the other hand, while having higher reaction intensity, TFB reactor has one fatal drawback of particle back-mixing, making it not suitable for certain reactions such as catalytic reaction where the catalyst requires frequent regeneration. This paper describes some key issues in the development of a circulating turbulent fluidized bed (CTFB) reactor that combines the advantages of both TFB and CFB, that is, to have the high reaction intensity as in TFB but and also to have a suppressed solids back-mixing as in CFB due to a continuous net upflow of solids flux through the bed. Experimental results show enough evidence to suggest that a new fluidization regime is formed, the characteristics of which appears to be distinct from those observed in a regular TFB and from those in either the bottom or the upper sections of regular CFB and/or high-density CFB (HDCFB). Fundamentally, the difference is that particle-particle interaction (collision) dominates the motion of particles in CTFB and TFB, while gas-particle interaction (drag force) is the key element that determines the two phase flow in CFB including HDCFB.  相似文献   

10.
This work presents the experimental research on the steady laminar natural convection heat transfer of air in three vertical thin rectangular channels with different gap clearance. The much higher ratio of width to gap clearance (60–24) and the ratio of length to gap clearance (800–320) make the rectangular channels similar with the coolant flow passage in plate type fuel reactors. The vertical rectangular channels were composed of two stainless steal plates and were heated by electrical heating rods. The wall temperatures were detected with the K-type thermocouples which were inserted into the blind holes drilled in the steal plates. Also the air temperatures at the inlet and outlet of the channel were detected. The wall heat fluxes added to the air flow were calculated by the Fourier heat conduction law. The heat transfer characteristics were analyzed, and the average Nusselt numbers in all the three channels could be well correlated with the Rayleigh number or the modified Rayleigh number in a uniform correlation. Furthermore, the maximum wall temperatures were investigated, which is a key parameter for the fuel’s integrity during some accidents. It was found that even the wall heat flux was up to 1500 W/m2, the maximum wall temperature was lower than 350 °C. All this work is valuable for the plate type reactor’s design and safety analysis.  相似文献   

11.
Mathematical modeling and simulation of fluid–structure interaction problems are in the focus of research already for a longer period. However, taking into account also chemical reactions, leading to structural changes, including changes of mechanical properties of the solid phase, is rather new but for many applications is highly important area. This paper formulates a model system for reactive flow and transport in a vessel system, the penetration of chemical substances into the solid wall. Inside the wall, reactions take place that lead to changes of volume and of the mechanical properties of the wall. Numerical algorithms are developed and used to simulate the dynamics of such a mechano‐chemical fluid–structure interaction problem. As a proof of concept scenario, plaque formation in blood vessels is chosen. The arbitrary Lagrangian Eulerian approach (ALE) is chosen to solve the systems numerically. Temporal discretization of the fully coupled monolithic model is accomplished by backward Euler scheme and spatial discretization by stabilized finite elements. The numerical approach is verified by numerical tests, and effective methods to maintain mesh qualities under large deformations are described. For realistic system parameters, the simulations show that the plaque formation in blood vessel is a long‐time effect. The time scale of the formation is in the simulation of comparable order as in reality. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Performance of horizontal copper heaters with a transverse fin structure was investigated for pool boiling heat transfer and critical heat flux limits. Data were obtained for 5.1 and 7.6 cm diameter structured cooper and brass heaters in saturated R-113 boiling at pressures ranging between 0.037 and 1 atm. The fin structure consisted of 0.16 cm×0.16 cm×0.32 cm high square fins with an interfin spacing of 0.16 cm. Following a similar methodology to Haley and Westwater1, a numerical analysis of the heat transfer phenomenon was performed by solving the one-dimensional fin conduction equation with a non-linear heat transfer boundary condition obtained from the previously reported data for R-113 boiling on plain surfaces. The predictions agreed with the data at the 1 atm pressure levels but showed deviations at the low pressure levels. The results showed that, compared with plain surface heaters of the same diameters the finned structured surfaces investigated: (a) decreased the wall temperature differences for a given heat flux and saturated pool boiling conditions, thus improving the nucleate boiling heat transfer coefficients, and (b) increased the critical heat flux limits, calculated as the power input divided by the heater projected area, by a factor of 2–2.5.  相似文献   

13.
In this study, a method of chemical cooling is put forward, that is, C–CO2 endothermic reaction is applied to instantaneous heat removal under high heat flux. A method in which theoretical research is in combination with numerical simulation is used to study C–CO2 endothermic reaction. In comparison with the theoretically computational results, numerical code is validated. A high heat flux of 500 W/cm2 is applied to the research of the heat dissipation characteristics of C–CO2 endothermic reaction. The theoretical calculation results show that, under a certain temperature and pressure condition, the C–CO2 chemical endothermic reaction could remove heat from the system promptly; the product CO could be used as a supplementary medium of power source for cycling. Compared with water phase change, the C–CO2 endothermic reaction appears to have stronger heat removal ability. “Species Transport” module in FLUENT was adopted to simulate the reaction. Under the same temperature and pressure condition, the numerical simulation results are found to be well congruous with theoretical results. The C–CO2 endothermic reaction could make a high temperature in the reaction system due to a high heat flux reduce to a low temperature (below zero) promptly. The heat removal and reaction time are in consistence with theoretical calculation.  相似文献   

14.
The effect of recirculation on the operating conditions of a chemical reactor, a model of which was proposed earlier in [1], is discussed. The feasibility and efficiency of carrying out many chemical processes in systems with recirculation was demonstrated in [2]. An investigation has also been made of the stability of operating conditions for one simple model of a reactor with a recycle [3]. In [1], a mathematical model was proposed for an ideal-displacement chemical reactor, taking integral account of heat evolution, in which diffusional transfer is negligibly small in comparison with convective transfer, and the thermal conductivity is so great that the temperature inside the reactor can be assumed to be identical. An investigation was made of the question of steady-state conditions and their stability. Below, this question is discussed for the case where, in such a reactor, part of the stream passing through the reactor is again fed to its inlet. As in [1, 4], account is taken of the dependence of the viscosity of the mixture of reagents and the reaction products on the temperature.  相似文献   

15.
This study deals with the phenomena occuring at single-pellet catalyst scale for the oxidative coupling of methane where heat transfer plays an important role. Computational fluid dynamics (CFD) is used for obtaining detailed rate and temperature profiles through the porous catalytic pellet where reaction and diffusion compete. Intra-particle temperature and concentration gradients were taken into account by solving heat transfer coupled with continuity equations in the catalyst pellet. In heat transfer, the energy term due to highly exothermic reaction was considered. Two external programs were successfully implemented into the CFD-code as kinetic and heat of reaction terms. Simulation results showed that reaction was favored at the beginning for the pellet, followed by diffusion predomination. The results of CFD simulation indicate that temperature variation within the catalyst pellet is <2 K due to exothermic oxidation. The results showed further that exothermic oxidation reactions occurred prior to endothermic coupling reaction in the pellet.  相似文献   

16.
Heat Transfer and Gas Flow through Feed Stream within Horizontal Pipe   总被引:4,自引:0,他引:4  
Guoxin  Hu  Wei  Xu  Yaqin  Liu 《Transport in Porous Media》2003,52(3):371-386
In the feeding process, the feed stream forms a moving packed bed of particle from the feedstock in the feed channel. When the feeding is at emergency interruption especially in the case of flooding and uncontrollable discharge, the hot gases from reactor would infiltrate into the feed stream. The high heat penetration into feed stream would affect the feeder performance. In this paper, transient thermal response of feed stream within horizontal pipe is described mathematically with a gas flow and heat transfer model. Influences of varied factors on the thermal penetration into feed stream are examined for different conditions. The temperature of the packed-bed particles and the gas velocity distribution curves are obtained for the feeding service at interruption and at normal operating conditions. The numerical results show that the thermal penetration to the packed-bed particles by the seepage flow fluid is high only in the position near the gas entrance. The thermal penetration depth tends to increase with the seepage flow velocity and decrease with feeding rate. There is no appreciable thermal penetration in the feed stream when the feeding service is at normal running. The operating conditions and the porosity of solid bed have importance effects on the gas velocity and temperature field in the thermal penetration zone. A test system is set up to determine the transient thermal response experimentally for the packed bed of particles within a horizontal pipe. The model results are found to compare favorably with the experimental data.  相似文献   

17.
Radial flow reactor operated at cross-flow heat transfer is focused for large scale methanol synthesis. The effects of operating conditions including the reactor inlet air temperature, the heating pipe temperature and the air flow rate on the cross-flow heat transfer were investigated and results show that the temperature profile of the area in front of the heating pipe is slightly affected by all the operating conditions. The main area whose temperature profile is influenced is located behind the heating pipe. The heat transfer direction is related to the direction of the flow. In order to obtain the basic parameters for radial flow reactor designing calculation, the dimensionless number group method was used for data fitting of the bed effective thermal conductivity and the wall heat transfer coefficient which were calculated by the mathematical model with the product of Reynolds number and Prandtl number. The comparison of experimental data and calculated values shows that the calculated values fit the experimental data satisfactorily and the formulas can be used for reactor designing calculation.  相似文献   

18.
Multidimensional numerical modeling and in situ spatially-resolved measurements of gas-phase thermoscalars over the catalyst boundary layer have fostered fundamental investigation of the heterogeneous and homogeneous chemical reaction pathways and their coupling at realistic operating conditions. The methodology for validating catalytic and gas-phase reaction mechanisms is firstly outlined for industrially-relevant fuels. Combination of advanced modeling and in situ near-wall species and velocity measurements is then used to address the intricate interplay between interphase fluid transport (laminar or turbulent) and hetero-/homogeneous kinetics. Controlling parameters of this interplay are the homogeneous ignition chemistry, flame propagation characteristics, competition between the catalytic and gaseous pathways for fuel consumption, diffusional imbalance of the limiting reactant, flow laminarization due to heat transfer from the hot catalytic walls, and fuel leakage through the gaseous reaction zone. Dynamic reactor operation and intrinsic flame dynamics driven by interactions between homogeneous kinetics and catalytic walls are outlined using detailed transient simulation. It is shown that the presence of catalytic reactions moderates flame instabilities. Future directions for transient modeling and for temporally-resolved in situ near-wall measurements are finally summarized.  相似文献   

19.
Acetone hydrogenation in a fixed bed reactor packed with spherical catalyst particles was simulated to study the effects of inlet gas velocity and particle diameter on hydrogenation reaction. Computational results show that the catalyst particles in the reactor are almost isothermal, and the high isopropanol concentration appears at the lee of the particles. With the increase of inlet velocity, the outlet isopropanol mole fraction decreases, and the total pressure drop increases drastically. Small diameter catalyst particles are favorable for acetone hydrogenation, but result in large pressure drop.  相似文献   

20.
Co–Mo/γ-Al2O3–TiO2 hydrodesulfurization (HDS) catalyst samples prepared by a urea matrix combustion (UMxC) method, were evaluated in a stainless tubular fixed-bed reactor, with thiophene, benzothiophene and dibenzothiophene in xylene as model feedstocks. The samples were pre-sulfurized using a cyclohexane solution of 3% CS2 and then tested for the HDS reaction. The test results were compared with catalysts prepared by conventional methods involving sequential impregnation (SI) and co-impregnation (CI). The catalysts were characterized using X-ray diffraction (XRD), laser Raman spectroscopy (LRS), high resolution transmission electron microscopy (HRTEM) and N2 physisorption, showing that the UMxC catalyst had higher pore volume and surface area than those prepared by the CI and SI methods. The UMxC method increased metal loading and avoided formation of inert phase, e.g., β-CoMoO4, for the HDS reaction, suggesting that UMxC method is superior to the conventional impregnation techniques. TiO2 promoter made particles on the catalyst surface closer and alleviated the interaction between molybdenum oxide and the support, and facilitated the formation of well-dispersed Co- and Mo-oxo species on catalyst surface, thus resulting in higher HDS catalytic activity than pure γ-Al2O3 support without modifiers. Consequently, the addition of TiO2 obviously improved the HDS conversion of dibenzothiophene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号