首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
A diruthenium complex with a redox‐active amine bridge has been designed, synthesized, and studied by single‐crystal X‐ray analysis and DFT and TDDFT calculations. It shows three well‐separated redox processes with exclusive near‐infrared (NIR) absorbance at each redox state. The electropolymerized film of a related vinyl‐functionalized complex displays multistate NIR electrochromism with low operational potential, good contrast ratio, and long retention time. Flip‐flop, flip‐flap‐flop, and ternary memories have been realized by using the obtained film (ca. 15–20 nm thick) with three electrochemical inputs and three NIR optical outputs that each displays three levels of signal intensity.  相似文献   

10.
11.
12.
13.
14.
Coiled‐coil peptides are frequently used to create new function upon the self‐assembly of supramolecular complexes. A multitude of coil peptide sequences provides control over the specificity and stability of coiled‐coil complexes. However, comparably little attention has been paid to the development of methods that allow the reversal of complex formation under non‐denaturing conditions. Herein, we present a reversible two‐state switching system. The process involves two peptide molecules for the formation of a size‐mismatched coiled‐coil duplex and a third, disruptor peptide that targets an overhanging end. A real‐time fluorescence assay revealed that the proximity between two chromophores can be switched on and off, repetitively if desired. Showcasing the advantages provided by non‐denaturing conditions, the method permitted control over the bivalent interactions of the tSH2 domain of Syk kinase with a phosphopeptide ligand.  相似文献   

15.
A method for implementing a secret sharing scheme at the molecular level is presented. By creating molecular code generators that are self‐assembled from several molecular components, we established a means for distributing distinct code‐activating elements among several participants. In this way, an authorization code can only be generated when all the participants are present, which ensures that highly secured systems cannot be operated by unauthorized individuals or disloyal users. Additional layers of protection result from the ability to program the security code by replacing one or several molecular components and by subjecting the system to distinct chemical inputs.  相似文献   

16.
17.
18.
Single‐molecule junctions that are sensitive to compression or elongation are an emerging class of nanoelectromechanical systems (NEMS). Although the molecule–electrode interface can be engineered to impart such functionality, most studies to date rely on poorly defined interactions. We focused on this issue by synthesizing molecular wires designed to have chemically defined hemilabile contacts based on (methylthio)thiophene moieties. We measured their conductance as a function of junction size and observed conductance changes of up to two orders of magnitude as junctions were compressed and stretched. Localised interactions between weakly coordinating thienyl sulfurs and the electrodes are responsible for the observed effect and allow reversible monodentate?bidentate contact transitions as the junction is modulated in size. We observed an up to ≈100‐fold sensitivity boost of the (methylthio)thiophene‐terminated molecular wire compared with its non‐hemilabile (methylthio)benzene counterpart and demonstrate a previously unexplored application of hemilabile ligands to molecular electronics.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号