首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanophase Fe3O4 and Fe2O3 were synthesized through a precipitation method and were utilized for the removal of either arsenic (III) or (V) from aqueous solution as a possible method for drinking water treatment. The synthesized nanoparticles were characterized using X-ray diffraction, which showed that the Fe3O4 and the Fe2O3 nanoparticles had crystal structures of magnetite and hematite, respectively. In addition, Secherrer's equation was used to determine that the grain size nanoparticles were 12 ± 1.0 nm and 17 ± 0.5 nm for the Fe2O3 and Fe3O4, respectively. Under a 1 h contact time, batch pH experiments were performed to determine the optimum pH for binding using 300 ppb of either As(III) or (V) and 10 mg of either Fe3O4 or Fe2O3. The binding was observed to be pH independent from pH 6 through pH 9 and a significant drop in the binding was observed at pH 10. Furthermore, batch isotherm studies were performed using the Fe2O3 and Fe3O4 to determine the binding capacity of As(III) and As(V) to the iron oxide nanomaterials. The binding was found to follow the Langmuir isotherm and the capacities (mg/kg) of 1250 (Fe2O3) and 8196 (Fe3O4) for As(III) as well as 20,000 (Fe2O3) and 5680 (Fe3O4) for As(III), at 1 and 24 h of contact time, respectively. The As(V) capacities were determined to be 4600 (Fe2O3), 6711(Fe3O4), 4904 (Fe2O3), and 4780 (Fe3O4) mg/kg for nanomaterials at contact times of 1 and 24 h respectively.  相似文献   

2.
In this paper, we discuss the synthesis and electrochemical properties of a new material based on iron oxide nanoparticles stabilized with poly(diallyldimethylammonium chloride) (PDAC); this material can be used as a biomimetic cathode material for the reduction of H2O2 in biofuel cells. A metastable phase of iron oxide and iron hydroxide nanoparticles (PDAC–FeOOH/Fe2O3-NPs) was synthesized through a single procedure. On the basis of the Stokes–Einstein equation, colloidal particles (diameter: 20 nm) diffused at a considerably slow rate (D = 0.9 × 10? 11 m s? 1) as compared to conventional molecular redox systems. The quasi-reversible electrochemical process was attributed to the oxidation and reduction of Fe3+/Fe2+ from PDAC–FeOOH/Fe2O3-NPs; in a manner similar to redox enzymes, it acted as a pseudo-prosthetic group. Further, PDAC–FeOOH/Fe2O3-NPs was observed to have high electrocatalytic activity for H2O2 reduction along with a significant overpotential shift, ΔE = 0.68 V from ? 0.29 to 0.39 V, in the presence and absence of PDAC–FeOOH/Fe2O3-NPs. The abovementioned iron oxide nanoparticles are very promising as candidates for further research on biomimetic biofuel cells, suggesting two applications: the preparation of modified electrodes for direct use as cathodes and use as a supporting electrolyte together with H2O2.  相似文献   

3.
This work introduces an effective, inexpensive, and large-scale production approach to the synthesis of Fe2O3 nanoparticles with a favorable configuration that 5 nm iron oxide domains in diameter assembled into a mesoporous network. The phase structure, morphology, and pore nature were characterized systematically. When used as anode materials for lithium-ion batteries, the mesoporous Fe2O3 nanoparticles exhibit excellent cycling performance (1009 mA h g 1 at 100 mA g 1 up to 230 cycles) and rate capability (reversible charging capacity of 420 mA h g 1 at 1000 mA g 1 during 230 cycles). This research suggests that the mesoporous Fe2O3 nanoparticles could be suitable as a high rate performance anode material for lithium-ion batteries.  相似文献   

4.
A magnetically separable palladium nanocatalyst has been synthesized through the immobilization of palladium onto 3-aminopropylphenanthroline Schiff based functionalized silica coated superparamagnetic Fe3O4 nanoparticles. The nanocatalyst (Fe3O4@SiNSB-Pd) was fully characterized using several spectroscopic techniques, such as FT-IR, HR-SEM, TEM, XRD, ICP, and XPS. The microscopic image of Fe3O4 showed spherical shape morphology and had an average size of 150 nm. The Pd-nanoparticles exhibited an average size 3.5 ± 0.6 nm. The successful functionalization of Fe3O4@SiNSB-Pd was identified by FT-IR spectroscopy and the appearance of palladium species in Fe3O4@SiNSB-Pd was confirmed by XRD analysis. While XPS has been utilized for the determination of the chemical oxidation state of palladium species in Fe3O4@SiNSB-Pd. Several activated and deactivated arene halides and olefines were employed for Mizoroki-Heck cross-coupling reactions in the presence of Fe3O4@SiNSB-Pd, each of which produced the respective cross-coupling products with excellent yields. The Fe3O4@SiNSB-Pd shows good reactivity and reusability for up to seven consecutive cycles.  相似文献   

5.
Hollow microspheres composed of phase-pure ZnFe2O4 nanoparticles (hierarchically structured) have been prepared by hydrothermal reaction. The unique hollow spherical structure significantly increases the specific capacity and improves capacity retention of this material. The product of each phase transition during initial discharge (ZnFe2O4 ? Li0.5ZnFe2O4 ? Li2ZnFe2O4  Li2O + Li–Zn + Fe) and their structural reversibility are recognized by X-ray diffraction and electrochemical characterization. The products of the deeply discharged (Li–Zn alloy and Fe) and recharged materials (Fe2O3) were clarified based on high resolution transmission electron microscopic technique and first-principle calculations.  相似文献   

6.
The active Fenton-like catalyst, obtained by highly dispersed Fe2O3 nanoparticles in size of 5 nm on the surface of zeolite Y, shows the excellent degradation efficiency to phenol higher than 90% under the mild conditions of room temperature and neutral solution, and the catalyst can be easily recovered with stable catalytic activity for 8 cycles.  相似文献   

7.
Nanoparticle film voltammetry is employed to explore the presence and reactivity of surface-stabilised iron redox centers at the interface of immobilised Fe2O3 nanoparticles of ca. 4 nm diameter and aqueous buffer media. Mesoporous films of Fe2O3 nanoparticles on tin-doped indium oxide (ITO) substrates are formed in a layer-by-layer deposition process from aqueous colloidal Fe2O3 and aqueous cyclohexyl-hexacarboxylate followed by thermal (500 °C) removal of the organic binder content. Both reversible oxidation and reversible reduction responses for Fe(III) are observed in phosphate and carbonate buffer media in the “underpotential” zone. Higher oxidation states of iron formed anodically (here tentatively assigned to Fe(IV)) are shown to be inert in phosphate buffer media but reactive towards the oxidation of glucose in carbonate buffer media.  相似文献   

8.
This work described the one-pot synthesis of apple pectin encapsulated Fe3O4 nanoparticles (Fe3O4/Pectin NPs) which is prepared by co-precipitation of Fe(II/(III) ions in alkaline solution mediated by pectin under ultrasound condition. This process led to formation of magnetic nanoparticles within the network of pectin. Physicochemical characterization of the as-synthesized Fe3O4/Pectin NPs was carried out through electron microscopy (SEM and TEM), energy dispersive X-ray spectroscopy (EDX), vibrating sample magnetometer (VSM) and X-ray diffraction (XRD). The in vitro cytotoxic and anti-colorectal cancer effects of biologically synthesized Fe3O4/Pectin NPs against Ramos.2G6.4C10, HCT-8 [HRT-18], HCT 116, and HT-29 cancer cell lines were assessed. The anti-colorectal cancer properties of the Fe3O4/Pectin NPs could significantly remove Ramos.2G6.4C10, HCT-8 [HRT-18], HCT 116, and HT-29 cancer cell lines in a time and concentration-dependent manner by MTT assay. The IC50 of the Fe3O4/Pectin NPs were 317, 337, 187, and 300 µg/mL against Ramos.2G6.4C10, HCT-8 [HRT-18], HCT 116, and HT-29 cancer cell lines. The antioxidant activity of Fe3O4/Pectin NPs was determined by DPPH method. The Fe3O4/Pectin NPs showed the high antioxidant activity according to the IC50 value. It seems that the anti-human colorectal cancer effect of recent nanoparticles is due to their antioxidant effects.  相似文献   

9.
A versatile route has been explored for the synthesis of nanorods of transition metal (Cu, Ni, Mn, Zn, Co and Fe) oxalates using reverse micelles. Transmission electron microscopy shows that the as-prepared nanorods of nickel and copper oxalates have diameter of 250 nm and 130 nm while the length is of the order of 2.5 μm and 480 nm, respectively. The aspect ratio of the nanorods of copper oxalate could be modified by changing the solvent. The average dimensions of manganese, zinc and cobalt oxalate nanorods were 100 μm, 120 μm and 300 nm, respectively, in diameter and 2.5 μm, 600 nm and 6.5 μm, respectively, in length. The aspect ratio of the cobalt oxalate nanorods could be modified by controlling the temperature.The nanorods of metal (Cu, Ni, Mn, Zn, Co and Fe) oxalates were found to be suitable precursors to obtain a variety of transition metal oxide nanoparticles. Our studies show that the grain size of CuO nanoparticles is highly dependent on the nature of non-polar solvent used to initially synthesize the oxalate rods. All the commonly known manganese oxides could be obtained as pure phases from the single manganese oxalate precursor by decomposing in different atmospheres (air, vacuum or nitrogen). The ZnO nanoparticles obtained from zinc oxalate rods are ~55 nm in diameter. Oxides with different morphology, Fe3O4 nanoparticles faceted (cuboidal) and Fe2O3 nanoparticles (spherical) could be obtained.  相似文献   

10.
BaCO3 nanoparticles are demonstrated as outstanding electrocatalysts to enhance the high temperature oxygen reduction reaction (ORR) in solid oxide fuel cells (SOFCs). BaCO3 nanoparticles are formed from thermal decomposition of barium acetate, Ba(Ac)2 infiltrated to porous cathode skeleton and shows good chemical compatibility with cathode materials. BaCO3 nanoparticles can greatly reduce the area specific resistance (ASR) of typical SOFC cathode materials, including La0.8Sr0.2FeO3  (LSF), La0.6Sr0.4Co0.2Fe0.8O3  (LSCF) and La0.8Sr0.2MnO3  (LSM). For example at 700 °C, ASR for LSF on yttria-stabilized zirconia (YSZ) electrolyte decreases from 2.95 Ω cm2 to 0.77 Ω cm2 when 12.9 wt.% BaCO3 nanoparticles are deposited on the surface of the porous LSF electrode. Impedance spectra analysis shows that the decrease in ASR mainly comes from the reduction of the low frequency resistance. Furthermore, BaCO3 nanoparticles are found to greatly enhance the oxygen chemical exchange coefficient. Most importantly, it has been found that the catalytic activity of BaCO3 nanoparticles is even higher than those of the precious metals such as Pd, Rh, Pt and Ag, infiltrated into LSF, LSCF and LSM electrodes supported on YSZ electrolytes.  相似文献   

11.
《Supramolecular Science》1998,5(5-6):683-686
Inorganic nanoparticles Fe2O3 3–5 nm in diameter were assembled on the surface of polymer microspheres and then encapsulated in the polymer to form a trilayer composite structure. The capacitance–voltage (CV) curve of the composite microsphere monolayer shows the presence of a plateau. The electron transportation process in the special structure was investigated combining with the energy band model. The results show that Fe2O3 layer acts as a charge trap between polymer layers which are regarded as potential barriers.  相似文献   

12.
Transition-metal doped double-perovskite structure oxides GdBaCo2/3Fe2/3Ni2/3O5+δ (FN-GBCO), GdBaCo2/3Fe2/3Cu2/3O5+δ (FC-GBCO), GdBaCoCuO5+δ (C-GBCO) and pristine GdBaCo2O5+δ (GBCO) were synthesized via a citrate combustion method. The thermal-expansion coefficient (TEC) and electrochemical performance of the oxides were investigated as potential cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The TEC exhibited by the FC-GBCO cathode up to 900 °C is 14.6 × 10?6 °C?1, which is lower than the value of GBCO (19.9 × 10?6 °C?1). Area specific resistances (ASR) of 0.165 Ω cm2 at 700 °C and 0.048 Ω cm2 at 750 °C were achieved for the FC-GBCO cathode on a Ce0.9Gd0.1O1.95 (CGO) electrolyte. An electrolyte supported (300 μm thick) single-cell configuration of FC-GBCO/CGO/Ni-CGO attained a maximum power density of 435 mW cm?2 at 700 °C. The unique composition of GBCO co-doped with Fe and Cu ions in the Co sites exhibited reduced TEC and enhancement of electrochemical performance and good chemical compatibility with CGO, and this composition is proving to be a potential cathode for IT-SOFCs.  相似文献   

13.
《Solid State Sciences》2007,9(8):744-749
FeCo2O4 spinel oxide pelleted electrodes were prepared from the respective powders, obtained by low-temperature coprecipitation method. X-ray diffraction studies suggest the coexistence of two spinel phases, with different a-cell parameters. The samples show semiconductor-type behaviour, in the range 530–340 K. The estimated activation energy for conduction is about 0.7 eV. These phases are stable, after being used as electrode materials, as the XRD and SEM/EDS results show. Cyclic voltammetry has been used to investigate the electrochemical behaviour of the FeCo2O4 electrodes in 1 mol dm−3 KOH aqueous solutions. The voltammetric data allowed finding out the redox reactions occurring at the electrode surface, namely Fe3O4·4H2O/Fe(OH)2 or Fe3O4/Fe2O3 and CoO2/CoOOH by comparing the experimental results with those referred in the literature.  相似文献   

14.
We report herein a simple device for rapid biosensing consisting of a single microfluidic channel made from poly(dimethylsiloxane) (PDMS) coupled to an injector, and incorporating a biocatalytic sensing electrode, reference and counter electrodes. The sensing electrode was a gold wire coated with 5 nm glutathione-decorated gold nanoparticles (AuNPs). Sensitive detection of H2O2 based on direct bioelectrocatalysis by horseradish peroxidase (HRP) was used for evaluation. HRP was covalently linked the glutathione–AuNPs. This electrode presented quasi-reversible cyclic voltammetry peaks at ?0.01 V vs. Ag/AgCl at pH 6.5 for the HRP heme FeIII/FeII couple. Direct electrochemical activity of HRP was used to detect H2O2 at high sensitivity with a detection limit of 5 nM in an unmediated system.  相似文献   

15.
Manganese is one of the heavy metals that is a major environmental concern when present in large amount. Manganese is discarded into water systems by numerous industries, including mining, batteries and electroplating etc. Pineapple leaves were applied as a biomass source to produce a magnetic hydrothermal treated hydochar nanocomposite; Fe3O4-HC. The BET surface area of Fe2O3-HC nanocomposite was 21.27 m2/g. Batch adsorption experiments revealed that the uptake of Mn2+ fit well in the pseudo second kinetics model, while the adsorption isotherm best fit the Freundlich model, with a maximum adsorption capacity of 2.99 mg/g at 25 °C and a pH of 5. The obtained thermodynamic parameters demonstrated that Mn2+ ion adsorption using the Fe2O3-HC nanocomposite was endothermic and nonspontaneous. Additionally, Fe2O3-HC nanocomposite demonstrated to be highly selective towards Mn2+ ions in the presence of other ions. The removal percentage of Mn2+ from a real water sample spiked with 50 mg/L Mn2+ was reported to be 53.2%. The spent adsorbent was then used to detect latent fingerprints, which revealed that Mn2+-Fe2O3-HC nanocomposite generated better and clear latent fingerprints than Fe2O3-HC nanocomposite.  相似文献   

16.
In this paper, the treatability of white liquor by conventional (CFP), modified (MFP) and electro-Fenton oxidation processes (EFP) was investigated depending on the COD parameter. Based on the experimental results, up to 62.4%, 58.4% and 54.9% COD removals by the CFP, MFP and EFP were achieved, respectively. It was observed that adjustment of initial pH to acidic values is not required in the CFP. The optimal operational conditions were found to be [Fe2+] = 500 mg/L, [H2O2] = 1000 mg/L at pH 7.3 (original pH) in the CFP, [Fe0] = 1250 mg/L, [H2O2] = 1000 mg/L at pH 3 in the MFP, and I = 1.0 A, [H2O2] = 1500 mg/L at pH 3 in the EFP, respectively. As a result, the CFP has been determined as a more efficient alternative treatment method.  相似文献   

17.
A phase transformation induced by the reduction of as-synthesized γ-maghemite (γ-Fe2O3) nanoparticles was performed in solution by exploiting the reservoir of reduction gas (CO) generated from the incomplete combustion reaction of organic substances in the reactor. Results from X-ray diffraction, color indicator, and magnetic analysis using a SQUID strongly support this phase transformation. Based on this route, monodisperse magnetite (Fe3O4) nanoparticles were simply produced in the range from 260 to 300 °C. Almost all aspects of the original γ-Fe2O3 nanoparticles, such as shape, size, and monodispersity, were maintained in the produced Fe3O4 nanoparticles.  相似文献   

18.
Lithium insertion into various iron vanadates has been investigated. Fe2V4O13 and Fe4(V2O7)3 · 3H2O have discharge capacities approaching 200 mAh g−1 above 2.0 V vs. Li+/Li. Although the potential profiles change significantly between the first and subsequent discharges, capacity retention is unexpectedly good. Other phases, structurally related to FeVO4, containing copper and/or sodium ions were also studied. One of these, β-Cu3Fe4(VO4)6, reversibly consumes almost 10 moles of electrons per formula unit (ca. 240 mAh g−1) between 3.6 and 2.0 V vs. Li+/Li, in a non-classical insertion process. It is proposed that both copper and vanadium are electrochemically active, whereas iron(III) reacts to form LiFeIIIO2. The capacity of the Cu3Fe4(VO4)6/Li system is nearly independent of cycling rate, stabilizing after a few cycles at 120–140 mAh g−1. Iron vanadates exhibit better capacities than their phosphate analogues, whereas the latter display more constant discharge potentials.  相似文献   

19.
《Supramolecular Science》1998,5(3-4):227-228
Embedding structures of a metal nanoparticle in an oxide matrix were first achieved by electron beam irradiation. In the system of Al/α-Al2O3. Al nanoparticles derived from θ-Al2O3 migrated and embedded in α-Al2O3 matrix having epitaxy relation, {1 1  0}α-Al2O3//{2 0 0} Al. The driving force of the embedding is momentum transfer from electrons or ions to Al atoms of nanoparticles in the pole piece of transmission electron microscopy.  相似文献   

20.
Carbon coated magnetite (Fe3O4) core-shell nanorods were synthesized by a hydrothermal method using Fe2O3 nanorods as the precursor. Transmission electron spectroscopy (TEM) and high resolution TEM (HRTEM) analysis indicated that a carbon layer was coated on the surfaces of the individual Fe3O4 nanorods. The electrochemical properties of Fe3O4/carbon nanorods as anodes in lithium-ion cells were evaluated by cyclic voltammetry, ac impedance spectroscopy, and galvanostatic charge/discharge techniques. The as-prepared Fe3O4/C core-shell nanorods show an initial lithium storage capacity of 1120 mAh/g and a reversible capacity of 394 mAh/g after 100 cycles, demonstrating better performance than that of the commercial graphite anode material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号