首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
In this study, a semi-analytical model was developed to illustrate the relationship between filtration performance (filtration efficiency and pressure drop) and dust loading under two different particle deposit structures based on theoretical analysis and computational fluid dynamic (CFD) technology. Under the compact deposit structure, within the practical parameter ranges (fiber diameter, air velocity, dust loading mass), a slight efficiency enhancement (∽10%) occurred at the most penetration particle size (MPPS) and pressure drop increased significantly (∽100%) in response to the solidity increase from 5% to 15%. However, under the dendritic particle deposit structure, both filtration efficiency (∽40%) and pressure drop (4600%) increased significantly with the same solidity increase due to the larger air velocity and swerve change between fibers.  相似文献   

2.
This study is devoted to the explanation of different characteristics of magnetic filtration and the way these characteristics affect the important filtration parameters. Magnetic fields in pores and the force effect of these fields on magnetic particles and the magnetization properties of packed beds composed of ferromagnetic spheres and metal chips are evaluated. The profile of accumulation and capture regions of the particles, the variation of the fluid velocity in these regions and analytic expressions of particle capture radius are presented. The effects of filtration regime parameters on magnetic filter performance were investigated. An analytical expression has been obtained for the dependence of the logarithmic efficiency coefficient on filtration velocity, the geometry of filter elements, the particle size and other parameters of filtration. The stationary and non-stationary equations of the magnetic filtration processes are given. An expression of magnetic filter performance is shown with dimensionless parameters obtained from the filtration system. These relations are useful for calculations in engineering practice, including the design of magnetic filters, provision of suggestions on construction, and optimization and control of filter operation.  相似文献   

3.
N. W. Page 《Shock Waves》1994,4(2):73-80
A physically based model for the shock Hugoniot of a powdered material is described which allows separate identification of the cold and thermal contributions to pressure and specific internal energy. Special features of this model are provision for the effects of porosity on the stress state and an empirically determined cold loading contribution to pressure. The model was tested against published Hugoniot data for iron and gave excellent agreement for shock pressures ranging from low to high values.This shock Hugoniot was used to explore the shocked state of 4 samples of iron powder derived from commercially available material. The purpose of this study was to investigate the effect of powder particle characteristics and initial starting densities on the shocked state.The powder samples investigated had a range of morphologies and sizes. Powders with either a large shape factor or high internal friction, as determined in shear cell experiments, exhibited a higher stiffness in the cold loading curve. In the shocked state, this translated into a higher cold component of pressure and energy than found in the other powders.The effect of initial powder density was studied by applying the Hugoniot model to two impact initiated shock loadings, one for a stainless steel flyer impacting at 0.5 km/s and one at the higher velocity of 2.0 km/s. Both were applied to iron powder targets preloaded to a range of initial densities. For a given impact event, the proportion of shock energy in the thermal mode was found to decrease with increasing initial density. This decrease was more pronounced at higher shock strengths. As a result of the decreasing component of thermal energy with higher initial density, there was a reduction in the continuum temperature behind the shock. However, the corresponding increase in the component of cold energy with the falling relative contribution from the thermal energy lead to increasing density behind the shock suggesting that there is a trade off in terms of temperature and density achievable with a given impact event.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

4.
Granular bed filters can effectively filter adhesive dust in high-temperature flue gas. In this study, polyvinyl chloride (PVC) powder was used as adhesive dust, and the mixture of PVC and ash powder was used to simulate solid and adhesive mixed dust. The effects of gas temperature, velocity, and inlet adhesive dust mass content on dust distribution in granular bed (GBF) were discussed. Results show that the mixed dust mainly accumulates on the upper part of the granular bed, and the mass of the collected dust decreases exponentially from the upper layer to the bottom layer in the GBF. The adhesive dust content collected in each layer differs from that of the incoming dust, and their deviation varies approximately linearly along with the depth of the bed. The total dust distribution and adhesive dust content deviation are influenced by gas temperature and inlet adhesive dust content but independent of gas velocity. The correlations of dust distribution of solid and adhesive mixed dust are presented based on the experimental results.  相似文献   

5.
6.
基于标准20 L球形爆炸装置,在相同测试条件下, 分别测量了石松子粉尘、甲烷和不同浓度配比的甲烷/石松子粉尘混合体系爆炸下限,并将测试结果与Le Chatelier’s law、Bartknecht curve、Jiang method等混合体系爆炸下限预测结果进行了对比。结果表明:低于爆炸下限的甲烷和低于爆炸下限的石松子粉尘混合后仍具有爆炸危险性。石松子粉尘爆炸下限随混合体系中甲烷体积分数的增高而减小。Le Chatelier’s law、Bartknecht curve、Jiang method均不能准确预测甲烷/石松子粉尘混合体系爆炸下限。Le Chatelier’s law对甲烷体积分数φ与甲烷爆炸下限φL之比φ/φL<0.5的混合体系爆炸下限的预测值偏小,而对φ/φL>0.5的混合体系预测值偏大;Bartknecht curve在预测φ/φL>0.5的混合体系爆炸下限时适用性较好,而对于φ/φL<0.5的混合体系预测值偏小;Jiang method不适用于预测甲烷/石松子粉尘混合体系爆炸下限。  相似文献   

7.
The objective of this paper is to address the transient flow structures around a pitching hydrofoil by combining physical and numerical studies. In order to predict the dynamic behavior of the flow structure effectively, the Lagrangian coherent structures (LCS) defined by the ridges of the finite-time Lyapunov exponent (FTLE) are utilized under the framework of Navier–Stokes flow computations.In the numerical simulations, the k-ω shear stress transport (SST) turbulence model, coupled with a two-equationγ- Reθ transition model, is used for the turbulence closure.Results are presented for a NACA66 hydrofoil undergoing slowly and rapidly pitching motions from 0~?to 15~?then back to 0~?at a moderate Reynolds number Re = 7.5 × 10~5.The results reveal that the transient flow structures can be observed by the LCS method. For the slowly pitching case,it consists of five stages: quasi-steady and laminar, transition from laminar to turbulent, vortex development, large-scale vortex shedding, and reverting to laminar. The observation of LCS and Lagrangian particle tracers elucidates that the trailing edge vortex is nearly attached and stable during the vortex development stage and the interaction between the leading and trailing edge vortex caused by the adverse pressure gradient forces the vortexes to shed downstream during the large-scale vortex shedding stage, which corresponds to obvious fluctuations of the hydrodynamic response. For the rapidly pitching case, the inflection is hardly to be observedand the stall is delayed. The vortex formation, interaction, and shedding occurred once instead of being repeated three times,which is responsible for just one fluctuation in the hydrodynamic characteristics. The numerical results also show that the FTLE field has the potential to identify the transient flows,and the LCS can represent the divergence extent of infinite neighboring particles and capture the interface of the vortex region.  相似文献   

8.
An experimental study on unsteady two phase flow is conducted in a vertical shock tube. Shock Mach numbers range from 1.3 to 1.5 in 1 bar. The particles are initially positioned in horizontal beds of various thicknesses. Our research covers a large domain of void fraction from 1 (single particles) to 0.35 (compact beds). The experiments provide shadowgraph images for the recording of particle trajectories (effect of the gas on the particles) and side-wall pressures (action of the particles on the gas). A dense two phase flow model has been elaborated and numerically solved using a finite difference scheme with pseudoviscosity. The simulated shock-induced fluidization of a 2 cm thick bed of 1.5 mm diameter glass particles is compared to the experiment. Received 10 September 1996 / Accepted 4 January 1997  相似文献   

9.
The effects of three factors (i.e., drop height h, hopper outlet diameter d0, and material temperature T) on the dust generation rate derived from a free falling particle stream were investigated via full factorial experiments. The correlation between the three factors and dust generation rate was also analysed. Results show that T and h affect the first fugitive dust rate largely, whereas the second fugitive dust rate is mainly dominated by h and d0. Through analysing the first fugitive dust percentage data, it is found that h and T should be considered first for higher temperatures and lower flow rates, whereas h and d0 can be considered under contrasting conditions, and h should be controlled in the remaining two sets of conditions. Relationships between the influencing factors and total and first fugitive dust rates were developed via multiple regression to quantify the dust emission rates for different contact surfaces (rigid or water).  相似文献   

10.
11.
Experiments have been conducted to investigate the two-degree-of-freedom vortex-induced vibration (VIV) response of a rigid section of a curved circular cylinder with low mass-damping ratio. Two curved configurations, a concave and a convex, were tested regarding the direction of the flow, in addition to a straight cylinder that served as reference. Amplitude and frequency responses are presented versus reduced velocity for a Reynolds number range between 750 and 15 000. Results for the curved cylinders with concave and convex configurations revealed significantly lower vibration amplitudes when compared to the typical VIV response of a straight cylinder. However, the concave cylinder showed relatively higher amplitudes than the convex cylinder which were sustained beyond the typical synchronisation region. We believe this distinct behaviour between the convex and the concave configurations is related to the wake interference taking place in the lower half of the curvature due to perturbations generated in the horizontal section when it is positioned upstream. Particle-image velocimetry (PIV) measurements of the separated flow along the cylinder highlight the effect of curvature on vortex formation and excitation revealing a complex fluid–structure interaction mechanism.  相似文献   

12.
This paper considers a unit elastic cube, made of compressible isotropic material, with its faces subjected to certain dead-load tractions that produce a possible equilibrium state of non-uniform dilatation. It is seen that, at the considered equilibrium state, the cube material acquires properties of pseudo-transverse isotropy. Conditions are obtained for the stability of such an equilibrium state with respect to superimposed pure homogeneous deformations having principal directions parallel to the cube edges. The problem of non-uniqueness of the cube dilatation states is also addressed, and non-uniqueness is illustrated in an example application dealing with an isotropic cube made of the Blatz-Ko material. The nature and the stability features of these equilibrium states are studied in depth.  相似文献   

13.
To examine the effects of wing morphing on unsteady aerodynamics, deformable flapping plates are numerically studied in a low-Reynolds-number flow. Simulations are carried out using an in-house immersed-boundary-method-based direct numerical simulation (DNS) solver. In current work, chord-wise camber is modeled by a hinge connecting two rigid components. The leading portion is driven by a biological hovering motion along a horizontal stroke plane. The hinged trailing-edge flap (TEF) is controlled by a prescribed harmonic deflection motion. The effects of TEF deflection amplitude, deflection phase difference, hinge location, and Reynolds number on the aerodynamic performance and flow structures are investigated. The results show that the unsteady aerodynamic performance of deformable flapping plates is dominated by the TEF deflection phase difference, which directly affects the strength of the leading-edge vortex (LEV) and thus influences the entire vortex shedding process. The overall lift enhancement can reach up to 26% by tailoring the deflection amplitude and deflection phase difference. It is also found that the role of the dynamic TEF played in the flapping flight is consistent over a range of hinge locations and Reynolds numbers. Results from a low aspect-ratio (AR=2) deformable plate show the same trend as those of 2-D cases despite the effect of the three-dimensionality.  相似文献   

14.
The term syringomyelia describes fluid-filled cavities in the spinal cord, which can interfere with normal nerve signal transmission. The finite-element code ADINA was used to construct an axisymmetric fluid/structure-interaction model of the tapered spinal cord and subarachnoid space (SAS), bounded by the dura mater. A syrinx was simulated, of corresponding dimensions to one shown by magnetic resonance imaging data of a patient with syringomyelia. The model was used to investigate the clinical hypothesis that SAS pressure waves move fluid along a syrinx and can thus lengthen it over time by tissue dissection. Simplified versions of the model were used to examine in detail the waves excited, and their reflection and refraction at sites of property discontinuity in the system. Comparison was made with wave predictions based on an analytical model, and excellent agreement was found. The results suggest that, under the circumstances modelled, pressure wave-induced motion of syrinx fluid is unlikely to lengthen such cavities, unless the transverse tensile strength of cord tissue is even smaller than has been appreciated so far.  相似文献   

15.
The purpose of this paper is to investigate the flow patterns in a centrifugal pump when it works as a centripetal turbine, with special interest in the unsteady behavior in order to explain the shape of the performance curves. Also, we focus on the determination of the radial thrust and other mechanical loads over a pump‐designed machine. The pump studied is commercial, with single axial suction and a vaneless spiral volute casing. A numerical study has been carried out in order to obtain more information about the flow into the volute and the impeller. A numerical three‐dimensional unsteady simulation has been developed using a commercial code that solves the URANS set of equations with a standard k–ε turbulence model. The results show the non‐axisymmetric flow developed in the volute, responsible for a significant radial thrust; the interaction between the tongue and the impeller, generating force fluctuations; the velocity and pressure distributions inside the impeller; and the exit flow, characterized with post‐rotation and low‐pressure. These flow results allow us to understand the behavior of the machine by comparing it with the pump mode. Complementarily, an experimental study was conducted to validate the numerical model and characterize the pump‐turbine performance curves at constant head. Fast‐response pressure taps and a three‐hole pneumatic pressure probe were employed to obtain a complete data set of non‐stationary and stationary measurements throughout the centrifugal machine. As a result, loss of efficiency or susceptibility to cavitation, detected numerically, was confirmed experimentally. The study demonstrates that the numerical methodology presented here has shown its reliability and possibilities to predict the unsteady flow and time‐mean characteristics of centrifugal pumps working as turbines. In particular, it is shown that the commercial design of the pump allows a reasonable use of the impeller as a turbine runner, due to the suitable adaptation of the inflow distributions to the volute casing. Moreover, the efficiency for the inverse mode is shown to be as high as achieved for the pumping operational mode. In addition, it is concluded that both axial and radial thrusts are controlled, though important unsteady fluctuations—up to 25%—clocked with the blade passing frequency appear beyond the nominal conditions. In that case, a moderate use of the pump as a turbine is recommended in order to minimize risks of fatigue failure of the bearings. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
By means of ink trace visualization of the flows in conventional straight, positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in transverse section, and by appling topology theory, the topological structures and vortex structure in the transverse section of a blade cascade were analyzed. Compared with conventional straight cascade, blade positive curving eliminates the separation line of the upper passage vortex, and leads the secondary vortex to change from close separation to open separation, while blade negative curving effects merely the positions of singular points and the intensities and scales of vortex. Foundation items: 973 Project of China; the Doctoral Foundation of Education Ministry of China (EDAF24403003) Biography: YANG Qing-hai (1969−)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号