首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ultraslow relaxation, on the order of a few seconds or longer, of the structure of the electrical double layer in response to the change in the phase-boundary potential across the ionic liquid (IL)|water(W) interface, which was recently reported for trioctylmethylammonium bis(nonafluorobutanesulfonyl)amide, has been confirmed in two new hydrophobic ionic liquids, trihexyltetradecylphosphonium bis(nonafluorobutanesulfonyl)amide and trihexyltetradecylphosphonium tetrakis(pentafluorophenyl)borate. A comparison of the degree of the hysteresis in electrocapillary curves for these ILs with those for trioctylmethylammonium bis(nonafluorobutanesulfonyl)amide demonstrates that the degree of the hysteresis is not correlated with the viscosity of these ILs. The ultraslow relaxation of the electrical double layer seems to be a general feature of ILs at electrified interfaces.  相似文献   

2.
The graphene anode was investigated in an ionic liquid electrolyte (0.7 M lithium bis(trifluoromethanesulfonyl)imide (LiNTf2)) in room temperature ionic liquid (N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPyrNTf2)). SEM and TEM images suggested that the electrochemical intercalation/deintercalation process in the ionic liquid electrolyte without vinylene carbonate (VC) leads to small changes on the surface of graphene particles. However, a similar process in the presence of VC results in the formation of a coating (SEI—solid electrolyte interface) on the graphene surface. During charging/discharging tests, the graphene electrode working together with the 0.7 M LiNTf2 in MPPyrNTf2 electrolyte lost its capacity, during cycling and stabilizes at ca. 200 mAh g?1 after 20 cycles. The addition of VC to the electrolyte (0.7 M LiNTf2 in MPPyrNTf2?+?10 wt.% VC) considerably increases the anode capacity. Electrodes were tested at different current regimes: ranging between 50 and 1,000 mA g?1. The capacity of the anode, working at a low current regime of 50 mA g?1, was ca. 1,250 mAh g?1, while the current of 500 mA g?1 resulted in capacity of 350 mAh g?1. Coulombic efficiency was stable and close to 95 % during ca. 250 cycles. The exchange current density, obtained from impedance spectroscopy, was 1.3?×?10?7 A cm?2 (at 298 K). The effect of the anode capacity decrease with increasing current rate was interpreted as the result of kinetic limits of the electrode operation.  相似文献   

3.
Electrochemical reductive exfoliation of graphite to few layered graphene(FLG) in presence of 1-ethyl-2,3-dimethyl imidazolium bis(trifluoromethylsulfonyl) imide ionic liquid and redox ionic liquid based ferrocene has been investigated. Thus, by applying a mild negative potential(-2.7 V vs. Fc/Fc~+) to carbon electrode in ionic liquid graphene flakes could be generated. The generated materials have been characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, high resolution transmission electron microscopy and atomic force microscopy. XPS and Raman analysis show that the electrochemical reductive exfoliation provides the formation of FLG. The thickness of the resulting FLG was found to be ranged between 4 and1 nm. HR-TEM images reveal the formation of few graphene layers and in some cases single graphene layer was observed.Moreover, this electrochemical route conduces to the formation of ionic liquid functionalized FLG. Finally, the reductive exfoliation was further investigated in the presence of redox ionic liquid. XPS and electrochemical measurements confirm the presence of ferrocene.  相似文献   

4.
We report here the influence of chemical denaturation of haemoglobin on its electrochemical behaviour at the polarised liquid|liquid interface. Denaturation with urea resulted in a modification of the haemoglobin electrochemical behaviour, with the disappearance of the forward transfer peak and a decrease of the reverse peak current. Although the reverse peak current increased linearly with the concentration of denatured haemoglobin in the aqueous phase, the slope of the current-concentration plot was three-times lower than that for native haemoglobin over the 0.1–1 μM concentration range. These results indicate the sensitivity of electrochemistry at liquid|liquid interfaces to protein tertiary structure.  相似文献   

5.
An in situ attenuated total reflection study of the chiral solid-liquid interface created by cinchonidine adsorption on a Pt/Al(2)O(3) model catalyst is presented. Experiments were performed in the presence of dissolved hydrogen, that is under conditions used for the heterogeneous enantioselective hydrogenation of alpha-functionalized ketones. Cinchonidine adsorbs via the quinoline moiety. The adsorption mode is coverage dependent and several species coexist on the surface. At low concentration (10(-6)M) a predominantly flat adsorption mode prevails. At increasing coverage two different tilted species, alpha-H abstracted and N lone pair bonded cinchonidine, are observed. The latter is only weakly bound and in a fast dynamic equilibrium with dissolved cinchonidine. At high concentration (10(-4)-10(-3) M) all three species coexist on the Pt surface. A slow transition from an adsorbate layer with a high fraction of alpha-H abstracted cinchonidine to one with a high fraction of N lone pair bonded cinchonidine is observed with the cinchonidine concentration being the driving force for the process. The reverse transition in the absence of dissolved cinchonidine is fast. Cinchonidine competes with solvent decomposition products for adsorption sites on the Pt, which may contribute to the observed solvent dependence of the heterogeneous enantioselective hydrogenation of ketones by cinchonidine-modified Pt.  相似文献   

6.
In situ attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopy has gained considerable attention as a powerful tool for exploring processes occurring at solid/liquid and solid/liquid/gas interfaces as encountered in heterogeneous catalysis and electrochemistry. Understanding of the molecular interactions occurring at the surface of a catalyst is not only of fundamental interest but constitutes the basis for a rational design of heterogeneous catalytic systems. Infrared spectroscopy has the exceptional advantage to provide information about structure and environment of molecules. In the last decade, in situ ATR-FT-IR has been developed rapidly and successfully applied for unraveling processes occurring at solid/liquid interfaces. Additionally, the kinetics of complex reactions can be followed by quantifying the concentration of products and reactants simultaneously in a non-destructive way. In this tutorial review we discuss some key aspects which have to be taken into account for successful application of in situ ATR-FT-IR to examine solid/liquid catalytic interfaces, including different experimental aspects concerned with the internal reflection element, catalyst deposition, cell design, and advanced experimental methods and spectrum analysis. Some of these aspects are illustrated using recent examples from our research. Finally, the potential and some limitations of ATR will be elucidated.  相似文献   

7.
The reflection-absorption infrared (RAIRS) spectra of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM]Tf 2N) are presented as a function of temperature between 114 and 292 K. A comparison is made with the corresponding infrared spectra (obtained with transmission spectroscopy) from bulk [EMIM]Tf 2N. The liquid and amorphous films show rather similar spectra, indicating that the film structure is similar in both cases. On the other hand, these spectra differ considerably from those of crystalline films. Characteristic differences seen between the film and bulk spectra are attributed to the different structures of the respective networks. There are, however, indications that under all studied conditions the cation-anion interaction is between the C-H groups of the [EMIM] ring and the SO 2 groups of the anion.  相似文献   

8.
The infrared spectra of solid ammonia at different phases and the existence of a metastable phase have been in controversy for the last fifty years. In order to address this problem, we studied the infrared spectra of solid ammonia in an ultrahigh vacuum chamber at distinct temperatures. Having prepared amorphous ammonia at 10 K, we observed a transition from the amorphous phase to the cubic crystalline phase at 57 K; successive re-cooling from 85 K back to 10 K confirms the presence of crystalline ammonia. No metastable phase has been detected.  相似文献   

9.
Emulsion particles formed in the vicinity of the interface between nitrobenzene (NB) and water (W) pass through the interface concurrently, resulting in current spikes on current versus potential and current versus time curves. The fact that the spikes appear only in the limited range of the phase boundary potential suggests the importance of the electrostatic interaction between charged particles and the polarized NB∣W interface. Even in the potential range where the transfer of emulsions is favored, the transfer occurs only intermittently. Each current spike reflects the transfer of an accumulation of emulsion particles that were dammed up in the vicinity of the interface, which resembles an avalanche.  相似文献   

10.
The potential-dependent adsorption behavior of water and ionic liquid was probed by surface-enhanced Raman spectroscopy (SERS) at the Ag electrode surface in the ionic liquids containing water with different concentrations.The configuration of water at the ionic liquid/electrode interface and the relationship between the potential of zero charge (pzc) and the molar fraction of water were deduced through the changes in the vibrational frequency of OH stretching mode.A small Stark effect value was determined ...  相似文献   

11.
利用表面增强拉曼光谱(SERS)研究了不同含水量下离子液体及水分子在银电极上随电位变化吸附方式的改变,通过水的O-H伸缩振动谱峰频率变化特征,详细探究了水在离子液体/电极界面上的存在形式及作用方式以及体系零电荷电位与水含量的关系.水含量较低时O-H伸缩振动的Stark系数值较低,随水含量的增加O-H伸缩振动的谱峰位置逐渐向高波数方向移动,同时O-H伸缩振动的Stark系数也逐渐增大,1molL-1[BMIM]Br水溶液中达到76cm-1V-1,且体系的零电荷电位正移,这些差异与水在离子液体中所形成氢键的程度及水分子的存在形式密切相关,在水的含量较低时水与离子液体阳离子通过氢键作用而存在于界面层中,当水的含量增加时,水分子间氢键的作用增强,水与电极表面直接作用的可能性增大.  相似文献   

12.
The air/liquid interface of a room temperature ionic liquid, 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim]OTf), is investigated using infrared-visible sum frequency generation (SFG) spectroscopy. The SFG spectra clearly show low-frequency modes [CF 3-symmetric stretching (ss) mode and SO 3-symmetric stretching (ss) mode] of the OTf anion, demonstrating the existence of anions polar oriented at the interface. The amplitude of the CF 3-ss peak of the OTf anion has the opposite sign with respect to that of the SO 3-ss peak, indicating that OTf anions at the surface have polar ordering where the nonpolar CF 3 group points away from the bulk into the air, whereas the SO 3 group points toward the bulk liquid. The line width of the SFG peak from the submerged SO 3 group is appreciably narrower than that from IR absorption, suggesting the environment of the surface OTf anions is much more homogeneous than that of the bulk. The vibrational calculations also suggest that the anions and the cations form a more specific aggregated configuration at the surface as compared to the bulk.  相似文献   

13.
Self-assembly of C(60), single-walled carbon nanotubes (SWNTs) and few-layer graphene at the toluene-water interface has been investigated, starting with different concentrations of the nanocarbons in the organic phase and carrying out the assembly to different extents. Morphologies and structures of the films formed at the interface have been investigated by electron microscopy and other techniques. In the case of C(60), the films exhibit hcp and fcc structures depending on the starting concentration in the organic phase, the films being single crystalline under certain conditions. Self-assembly of the composites formed by pairs of nanocarbons (C(60)-SWNT, C(60)-few-layer graphene and SWNT-few-layer graphene) at the interface has been studied by electron microscopy. Raman spectroscopy and electronic absorption spectroscopy of the films formed at the interface have revealed the occurrence of charge-transfer interaction between SWNTs and C(60) as well as between few-layer graphene and C(60).  相似文献   

14.
The experimental considerations necessary to effect successful recording of in situ vibrational spectroscopy at the electrode-solution interface are described. In this work, the Fourier transform infrared spectrometer is used.  相似文献   

15.
Physical and chemical properties of liquid water are dominated by hydrogen bond structure and dynamics. Recent studies on nonlinear vibrational spectroscopy of intramolecular motion provided new insight into ultrafast hydrogen bond dynamics. However, our understanding of intermolecular dynamics of water is still limited. We theoretically investigated the intermolecular dynamics of liquid water in terms of two-dimensional infrared (2D IR) spectroscopy. The 2D IR spectrum of intermolecular frequency region (<1000 cm(-1)) is calculated by using the equilibrium and nonequilibrium hybrid molecular dynamics method. We find the ultrafast loss of the correlation of the libration motion with the time scale of approximately 110 fs. It is also found that the energy relaxation from the libration motion to the low frequency motion takes place with the time scale of about 180 fs. We analyze the effect of the hindered translation motion on these ultrafast dynamics. It is shown that both the frequency modulation of libration motion and the energy relaxation from the libration to the low frequency motion significantly slow down in the absence of the hindered translation motion. The present result reveals that the anharmonic coupling between the hindered translation and libration motions is essential for the ultrafast relaxation dynamics in liquid water.  相似文献   

16.
Abstract

The molecular arrangement of 5CB confined within the cylindrical pores of Anopore membranes was characterized by means of the IR-order parameter obtained from linear dichroism measurements of selected IR absorption bands. The treatment of the experimental data includes a local field correction extended to the twisted nematic configuration, yielding order parameters increased by about 30% in comparison with the uncorrected data. The nematic director of 5CB aligns along the pore axes, whereas in lecithin coated Anopore channels, the local nematic director is oriented approximately radially due to the perpendicular anchoring of the 5CB molecules at the pore wall. Doping of 5CB with the chiral agent CB15 yields local nematic directors tilted with respect to the pore axes. The average tilt angle increases up to about 40° at a fraction of CB15, x cb15 = 0.25 (w/w). These results are discussed in terms of the conical helicoidal and alternatively the radially twisted axial arrangement of the LC molecules within submicrometer cylindrical cavities.  相似文献   

17.
The molecular arrangement of 5CB confined within the cylindrical pores of Anopore membranes was characterized by means of the IR-order parameter obtained from linear dichroism measurements of selected IR absorption bands. The treatment of the experimental data includes a local field correction extended to the twisted nematic configuration, yielding order parameters increased by about 30% in comparison with the uncorrected data. The nematic director of 5CB aligns along the pore axes, whereas in lecithin coated Anopore channels, the local nematic director is oriented approximately radially due to the perpendicular anchoring of the 5CB molecules at the pore wall. Doping of 5CB with the chiral agent CB15 yields local nematic directors tilted with respect to the pore axes. The average tilt angle increases up to about 40° at a fraction of CB15, xcb15 = 0.25 (w/w). These results are discussed in terms of the conical helicoidal and alternatively the radially twisted axial arrangement of the LC molecules within submicrometer cylindrical cavities.  相似文献   

18.
The underpotential deposition of metals on a single crystal electrode in the presence of anions has been studied in the framework of a triangular lattice gas model with pair- and three particle lateral interactions. Interactions between the adsorbed species cause the formation of the ordered (√3 × √3) structures in accordance with the symmetry of the lattice of adsorption sites. Using the mathematical equivalence between the lattice gas model and Ising and Blume-Emery-Griffiths spin models, we apply the method of the real space renormalization group for investigation the phase diagram of the system and the processes of deposition and desorption of the ions. It is shown that the phase transitions, occurring in the system, influence the underpotential deposition of metal ions strongly and are observed as sharp peaks in the voltammograms. We calculate coulometric and voltammetric curves and estimate the order of the lateral interaction magnitude between the adsorbed ions.  相似文献   

19.
The chain orientation in the monolayers of amino-acid-derived Schiff base, 4-(4-dodecyloxy)-2-hydroxybenzylideneamino)benzoic acid (DSA), at the air-water interface has been determined using infrared reflection absorption spectroscopy (IRRAS). On pure water, a condensed monolayer is formed with the long axes of Schiff base segments almost perpendicular to the water surface. In the presence of metal ions (Ca2+, Co2+, Zn2+, Ni2+, and Cu2+) in the subphase, the monolayer is expanded and the long axes of the Schiff base segments are inclined with respect to the monolayer normal depending on metal ion. The monolayer thickness, which is an important parameter for quantitative determination of orientation of hydrocarbon chains, is composed of alkyl chains and salicylideneaniline portions for the DSA monolayers. The effective thickness of the Schiff base portions is roughly estimated in the combination of the IRRAS results and surface pressure-area isotherms for computer simulation, since the only two observable p- and s-polarized reflectance-absorbance (RA) values can be obtained. The alkyl chains with almost all-trans conformations are oriented at an angle of about 10 degrees for H2O, 15 degrees for Ca2+, 30 degrees for Co2+, 35 degrees -40 degrees for Zn2+, and 35 degrees -40 degrees for Ni2+ with respect to the monolayer normal. The chain segments linked with gauche conformers in the case of Cu2+ are estimated to be 40 degrees -50 degrees away from the normal.  相似文献   

20.
In this paper, the effect of a coadsorbed polyanion–cationic surfactant system on the transport of tetraethylammonium ion across the water|1,2-dichloroethane interface is studied. It is shown that the change in double-layer structure due to the presence of adsorbed or coadsorbed surfactant can explain the experimental observations, thus concluding that no other effects on ion transfer (e.g., steric hindrance) are relevant under these experimental conditions. The implications of these results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号