首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obtaining a matching in a graph satisfying a certain objective is an important class of graph problems. Matching algorithms have received attention for several decades. However, while there are efficient algorithms to obtain a maximum weight matching, not much is known about the maximum weight maximum cardinality, and maximum cardinality maximum weight matching problems for general graphs. Our contribution in this work is to show that for bounded weight input graphs one can obtain an algorithm for both maximum weight maximum cardinality (for real weights), and maximum cardinality maximum weight matching (for integer weights) by modifying the input and running the existing maximum weight matching algorithm. Also, given the current state of the art in maximum weight matching algorithms, we show that, for bounded weight input graphs, both maximum weight maximum cardinality, and maximum cardinality maximum weight matching have algorithms of similar complexities to that of maximum weight matching. Subsequently, we also obtain approximation algorithms for maximum weight maximum cardinality, and maximum cardinality maximum weight matching.   相似文献   

2.
We introduce two interdiction problems involving matchings, one dealing with edge removals and the other dealing with vertex removals. Given is an undirected graph G with positive weights on its edges. In the edge interdiction problem, every edge of G has a positive cost and the task is to remove a subset of the edges constrained to a given budget, such that the weight of a maximum matching in the resulting graph is minimized. The vertex interdiction problem is analogous to the edge interdiction problem, with the difference that vertices instead of edges are removed. Hardness results are presented for both problems under various restrictions on the weights, interdiction costs and graph classes. Furthermore, we study the approximability of the edge and vertex interdiction problem on different graph classes. Several approximation-hardness results are presented as well as two constant-factor approximations, one of them based on iterative rounding. A pseudo-polynomial algorithm for solving the edge interdiction problem on graphs with bounded treewidth is proposed which can easily be adapted to the vertex interdiction problem. The algorithm presents a general framework to apply dynamic programming for solving a large class of problems in graphs with bounded treewidth. Additionally, we present a method to transform pseudo-polynomial algorithms for the edge interdiction problem into fully polynomial approximation schemes, using a scaling and rounding technique.  相似文献   

3.
A set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. A graph is total domination edge addition stable if the addition of an arbitrary edge has no effect on the total domination number. In this paper, we characterize total domination edge addition stable graphs. We determine a sharp upper bound on the total domination number of total domination edge addition stable graphs, and we determine which combinations of order and total domination number are attainable. We finish this work with an investigation of claw-free total domination edge addition stable graphs.  相似文献   

4.
Total domination critical and stable graphs upon edge removal   总被引:1,自引:0,他引:1  
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. A graph is total domination edge critical if the removal of any arbitrary edge increases the total domination number. On the other hand, a graph is total domination edge stable if the removal of any arbitrary edge has no effect on the total domination number. In this paper, we characterize total domination edge critical graphs. We also investigate various properties of total domination edge stable graphs.  相似文献   

5.
Given an undirected graph with weights on its vertices, the k most vital nodes independent set (k most vital nodes vertex cover) problem consists of determining a set of k vertices whose removal results in the greatest decrease in the maximum weight of independent sets (minimum weight of vertex covers, respectively). We also consider the complementary problems, minimum node blocker independent set (minimum node blocker vertex cover) that consists of removing a subset of vertices of minimum size such that the maximum weight of independent sets (minimum weight of vertex covers, respectively) in the remaining graph is at most a specified value. We show that these problems are NP-hard on bipartite graphs but polynomial-time solvable on unweighted bipartite graphs. Furthermore, these problems are polynomial also on cographs and graphs of bounded treewidth. Results on the non-existence of ptas are presented, too.  相似文献   

6.
A connected graph G can be disconnected or reduced to a single vertex by removing an appropriate subset of the vertex set V(G), and can be disconnected by removing a suitable subset of the edge set E(G). Attention has usually been centered on separating sets having minimum cardinality, and parameters called the vertex connectivity and the edge connectivity defined. These classical concepts are generalized by using separating sets which are minimal. By considering the maximum as well as the minimum cardinality of such sets, one defines vertex and edge connectivity parameters. Sharp upper bounds are established for these numbers and their values computed for certain classes of graphs. An analogue of Whitney's theorem on connectivity is obtained. Parameters are also defined for minimal separating sets consisting of a mixture of vertices and edges, and these are shown to depend on the maximum and minimum values of the vertex and edge connectivity parameters.  相似文献   

7.
A note on power domination in grid graphs   总被引:1,自引:0,他引:1  
The problem of monitoring an electric power system by placing as few measurement devices in the system as possible is closely related to the well known vertex covering and dominating set problems in graphs (see [T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, M.A. Henning, Power domination in graphs applied to electrical power networks, SIAM J. Discrete Math. 15(4) (2002) 519-529]). A set S of vertices is defined to be a power dominating set of a graph if every vertex and every edge in the system is monitored by the set S (following a set of rules for power system monitoring). The minimum cardinality of a power dominating set of a graph is its power domination number. In this paper, we determine the power domination number of an n×m grid graph.  相似文献   

8.
Given an edge- or vertex-weighted graph or digraph and a list of source-sink pairs, the minimum multicut problem consists in selecting a minimum weight set of edges or vertices whose removal leaves no path from each source to the corresponding sink. This is a classical NP-hard problem, and we show that the edge version becomes tractable in bounded tree-width graphs if the number of source-sink pairs is fixed, but remains NP-hard in directed acyclic graphs and APX-hard in bounded tree-width and bounded degree unweighted digraphs. The vertex version, although tractable in trees, is proved to be NP-hard in unweighted cacti of bounded degree and bounded path-width.  相似文献   

9.
An apple A k is the graph obtained from a chordless cycle C k of length k ≥ 4 by adding a vertex that has exactly one neighbor on the cycle. The class of apple-free graphs is a common generalization of claw-free graphs and chordal graphs, two classes enjoying many attractive properties, including polynomial-time solvability of the maximum weight independent set problem. Recently, Brandstädt et al. showed that this property extends to the class of apple-free graphs. In the present paper, we study further generalization of this class called graphs without large apples: these are (A k , A k+1, . . .)-free graphs for values of k strictly greater than 4. The complexity of the maximum weight independent set problem is unknown even for k = 5. By exploring the structure of graphs without large apples, we discover a sufficient condition for claw-freeness of such graphs. We show that the condition is satisfied by bounded-degree and apex-minor-free graphs of sufficiently large tree-width. This implies an efficient solution to the maximum weight independent set problem for those graphs without large apples, which either have bounded vertex degree or exclude a fixed apex graph as a minor.  相似文献   

10.
An acyclic graphoidal cover of a graph G is a collection ψ of paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ and every edge of G is in exactly one path in ψ. The minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering number of G and is denoted by ηa. In this paper we characterize the class of graphs G for which ηa=Δ−1 where Δ is the maximum degree of a vertex in G.  相似文献   

11.
一个社会网络中通常包括具有正面影响和负面影响的两类人员,为了研究这个社会网络中人们之间相互影响的某些规律,引入了一个新的概念. 用划分图G=(V,E),V=V+ \cup V-表示这样的一个社会网络,其中V+和V- 分别表示正面人员的集合和负面人员的集合. 图G的一个点子集D\subseteq V-被称为G的一个正影响集,若G的每个点的至少一半的邻点在D\cup V+中. G的所有正影响集的最小基数称为G的正影响数. 给出G的正影响数的几个下界并证明了这些界是紧的. 此外,还证明了求正影响数问题在二部图和弦图上都是NP-完全的.  相似文献   

12.
Let h be a finite group acting on unlabeled graphs which does not change connectivity. Examples include edge reversal in directed graphs and permutations of colors in edge and/or vertex colored graphs. The generating functions of h-invariant (directed) graphs and h-invariant (weakly) connected (directed) graphs are discussed. This leads to a recursive formula for calculating the number of connected graphs when the total number of graphs is known. This is then applied to self-dual signed graphs, self-converse digraphs, and color cyclic graphs. Asymptotic expansions are also obtained. As expected, almost all of the above h-invariant graphs are connected and the asymptotic number of disconnected graphs has a simple interpretation.  相似文献   

13.
A graph G is said to be super-connected if any minimum cut of G isolates a vertex. In a previous work due to the second author of this note, super-connected graphs which are both vertex transitive and edge transitive are characterized. In this note, we generalize the characterization to edge transitive graphs which are not necessarily vertex transitive, showing that the only irreducible edge transitive graphs which are not super-connected are the cycles Cn(n?6) and the line graph of the 3-cube, where irreducible means the graph has no vertices with the same neighbor set. Furthermore, we give some sufficient conditions for reducible edge transitive graphs to be super-connected.  相似文献   

14.
An acyclic graphoidal cover of a graph G is a collection ψ of paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ and every edge of G is in exactly one path in ψ. The minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering number of G and is denoted by ηa. A path partition of a graph G is a collection P of paths in G such that every edge of G is in exactly one path in P. The minimum cardinality of a path partition of G is called the path partition number of G and is denoted by π. In this paper we determine ηa and π for several classes of graphs and obtain a characterization of all graphs with Δ 4 and ηa = Δ − 1. We also obtain a characterization of all graphs for which ηa = π.  相似文献   

15.
Cooperative matching games (Shapley and Shubik) and Network bargaining games (Kleinberg and Tardos) are games described by an undirected graph, where the vertices represent players. An important role in such games is played by stable graphs, that are graphs whose set of inessential vertices (those that are exposed by at least one maximum matching) are pairwise non adjacent. In fact, stable graphs characterize instances of such games that admit the existence of stable outcomes. In this paper, we focus on stabilizing instances of the above games by blocking as few players as possible. Formally, given a graph G we want to find a minimum cardinality set of vertices such that its removal from G yields a stable graph. We give a combinatorial polynomial-time algorithm for this problem, and develop approximation algorithms for some NP-hard weighted variants, where each vertex has an associated non-negative weight. Our approximation algorithms are LP-based, and we show that our analysis are almost tight by giving suitable lower bounds on the integrality gap of the used LP relaxations.  相似文献   

16.
It is shown in this paper that the weighted domination problem and its three variants, the weighted connected domination, total domination, and dominating clique problems are NP-complete on cobipartite graphs when arbitrary integer vertex weights are allowed and all of them can be solved in polynomial time on cocomparability graphs if vertex weights are integers and less than or equal to a constant c. The results are interesting because cocomparability graphs properly contain cobipartite graphs and the cardinality cases of the above problems are trivial on cobipartite graphs. On the other hand, an O(¦V¦2) algorithm is given for the weighted independent perfect domination problem of a cocomparability graph G = (V.E).  相似文献   

17.
《Journal of Graph Theory》2018,87(4):460-474
An odd k‐edge‐coloring of a graph G is a (not necessarily proper) edge‐coloring with at most k colors such that each nonempty color class induces a graph in which every vertex is of odd degree. Pyber (1991) showed that every simple graph is odd 4‐edge‐colorable, and Lužar et al. (2015) showed that connected loopless graphs are odd 5‐edge‐colorable, with one particular exception that is odd 6‐edge‐colorable. In this article, we prove that connected loopless graphs are odd 4‐edge‐colorable, with two particular exceptions that are respectively odd 5‐ and odd 6‐edge‐colorable. Moreover, a color class can be reduced to a size at most 2.  相似文献   

18.
19.
A vertex distinguishing edge coloring of a graph G is a proper edge coloring of G such that any pair of vertices has the distinct sets of colors. The minimum number of colors required for a vertex distinguishing edge coloring of a graph G is denoted by ???? s (G). In this paper, we obtained upper bounds on the vertex distinguishing chromatic index of 3-regular Halin graphs and Halin graphs with ??(G) ?? 4, respectively.  相似文献   

20.
A graph is clique-perfect if the cardinality of a maximum clique-independent set equals the cardinality of a minimum clique-transversal, for all its induced subgraphs. A graph G is coordinated if the chromatic number of the clique graph of H equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The complete lists of minimal forbidden induced subgraphs for the classes of cliqueperfect and coordinated graphs are not known, but some partial characterizations have been obtained. In this paper, we characterize clique-perfect and coordinated graphs by minimal forbidden induced subgraphs when the graph is either paw-free or {gem,W4,bull}-free, two superclasses of triangle-free graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号