首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
A series of bis‐amides decorated with pyridyl and phenyl moieties derived from L ‐amino acids having an innocent side chain (L ‐alanine and L ‐phenyl alanine) were synthesized as potential low‐molecular‐weight gelators (LMWGs). Both protic and aprotic solvents were found to be gelled by most of the bis‐amides with moderate to excellent gelation efficiency (minimum gelator concentration=0.32–4.0 wt. % and gel–sol dissociation temperature Tgel=52–110 °C). The gels were characterized by rheology, DSC, SEM, TEM, and temperature‐variable 1H NMR measurements. pH‐dependent gelation studies revealed that the pyridyl moieties took part in gelation. Structure–property correlation was attempted using single‐crystal X‐ray and powder X‐ray diffraction data. Remarkably, one of the bis‐pyridyl bis‐amide gelators, namely 3,3‐Phe (3‐pyridyl bis‐amide of L ‐phenylalanine) displayed outstanding shape‐sustaining, load‐bearing, and self‐healing properties.  相似文献   

2.
A new route towards the synthesis of N‐substituted‐4‐formylpiperidine using N‐benzyl or tryptaminyl‐sulfonylacetamide and α,β‐unsaturated ester as starting materials is described. Formal synthesis of Aricept®, deethylibophyllidine, and isoguvacine, which have potential biological activities, were synthesized via this strategy.  相似文献   

3.
Triclinic single crystals of Cu4(H3N–(CH2)9–NH3)(OH)2[C6H2(COO)4]2 · 5H2O were prepared in aqueous solution at 80 °C in the presence of 1,9‐diaminononane. Space group P$\bar{1}$ (no. 2) with a = 1057.5(2), b = 1166.0(2), c = 1576.7(2) pm, α = 106.080(10)°, β = 90.73(2)° and γ = 94.050(10)°. The four crystallographic independent Cu2+ ions are surrounded by five oxygen atoms each with Cu–O distances between 191.4(3) and 231.7(4) pm. The connection between the Cu2+ coordination polyhedra and the [C6H2(COO)4]4– anions yields three‐dimensional framework with negative excess charge and wide centrosymmetric channel‐like voids. These voids extend parallel to [001] with the diagonal of the nearly rectangular cross‐section of approximately 900 pm. The channels of the framework accommodate [H3N–(CH2)9–NH3]2+ cations and water molecules, which are not connected to Cu2+. The nonane‐1,9‐diammonium cations adopt a partial gauche conformation. Thermoanalytical measurements in air show a loss of water of crystallization starting at 90 °C and finishing at approx. 170 °C. The dehydrated compound is stable up to 260 °C followed by an exothermic decomposition yielding copper oxide.  相似文献   

4.
Four metal‐organic coordination polymers [Cd(4‐bpcb)1.5Cl2(H2O)] ( 1 ), [Cd(4‐bpcb)0.5(mip)(H2O)2] · 3H2O ( 2 ), [Co(4‐bpcb)(oba)(H2O)2] ( 3 ), and [Ni(4‐bpcb)(oba)(H2O)2] ( 4 ) [4‐bpcb = N,N′‐bis(4‐pyridinecarboxamide)‐1, 4‐benzene, H2mip = 5‐methylisophthalic acid, and H2oba = 4, 4′‐oxybis(benzoic acid)] were synthesized under hydrothermal conditions and characterized by single‐crystal X‐ray diffraction, elemental analyses, IR spectroscopy, powder X‐ray diffraction, and TG analysis. In complex 1 , two Cl anions serve as bridges to connect two Cd‐(μ1‐4‐bpcb) subunits forming a dinuclear unit, which are further linked by μ2‐bridging 4‐bpcb to generate 1D zigzag chain. Complex 2 shows a 2D 63 network constructed by [Cd‐mip]n zigzag chains and μ2‐bridging 4‐bpcb ligands. Complexes 3 and 4 are isostructural 2D (4, 4) grid networks derived from [M‐oba]n (M = Co, Ni) zigzag chains and [M‐(4‐bpcb)]n linear chains. The 1D chains for 1 and the 2D networks for 2 – 4 are finally extended into 3D supramolecular architectures by hydrogen bonding interactions. The roles of dicarboxylates and central metal ions on the assembly and structures of the target compounds were discussed. Moreover, the thermal stabilities, photoluminescent properties, and photocatalytic activities of complexes 1 – 4 and the electrochemical properties of complexes 3 and 4 were investigated.  相似文献   

5.
《中国化学会会志》2018,65(7):810-821
A series of coumarin‐substituted 1,3‐thiazine‐2‐thione derivatives ( 4a–m ) were synthesized via the multicomponent reaction of 3‐chloro‐3‐(2‐oxo‐2H‐chromen‐3‐yl)acrylaldehyde ( 1 ) carbon disulfide ( 2 ), and various primary amines ( 3 ), in presence of triethylamine and acetonitrile under stirring with good yields. The structures of all the synthesized compounds were characterized by analytical and spectral studies. Further, the synthesized compounds were screened for their in vitro antiproliferative activities against different cancer cell lines (A549, MDA‐MB‐231, MCF7, HeLa, and B16F10). Studies on the molecular interactions to recognize the hypothetical binding motif of the title compounds with the target Hsp 100 were carried out employing the Schrodinger software. Compounds 4a , 4c and 4m showed activity against all the five cell lines compared with the reference drug, and 4a exhibited the least IC50 concentration of 7.56 ± 1.07 μg/mL against MCF7. This in vitro anticancer result was supported by in silico docking and in silico ADME (absorption, distribution, metabolism, and excretion) studies as well.  相似文献   

6.
He‐Jun Lu  Jin‐Tao Liu 《中国化学》2001,19(12):1268-1272
In the presence of N, N′‐dicyclohexylcarbodiimide, 2‐aminopyridine and its derivatives (2) condensed with 2, 2‐di‐hydropolyfluoroalkanoic adds (1) to give the corresponding amides. Subsequent intramolecular Micheal addition‐elimination reactions of the fluorine‐containing amides under basic conditions gave 4‐fluoroalkyl‐2H‐pyrido[1,2‐a]pyrimidin‐2‐ones (3) in good yields.  相似文献   

7.
Ttrans‐3,5‐dihydroperoxy‐3,5‐dimethyl‐1,2‐dioxalane has been used as new, effective, solid, inexpensive and nontoxic oxidant for in situ generation of Br+ from HBr. This system has been applied as catalyst for synthesis of 2‐aryl‐1H‐benzothiazoles and 2‐aryl‐1‐arylmethyl‐1H‐benzimidazoles at room temperature in excellent yields and high purity.  相似文献   

8.
Molecules of the title compound, C16H14N2O, a potential plant‐growth regulator, are linked into chains by intermolecular C=O...H—N hydrogen bonds. These chains are weakly interconnected by π–π stacking interactions to form a three‐dimensional framework. A comparison of the geometric parameters of the title molecule and several related benzimidazoles and pyrrolidones is presented.<!?tpb=22pt>  相似文献   

9.
A new monomer, exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalimidoethanoyl‐5‐fluorouracil (ETFU), was synthesized by the reaction of exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalimidoethanoyl chloride (ETPC) and 5‐fluorouracil (5‐FU). The homopolymer of ETFU and its copolymers with acrylic acid (AA) and vinyl acetate (VAc) were prepared via photopolymerizations with 2,2‐dimethoxy‐2‐phenylacetophenone at 25 °C for 48 h. The structures of the synthesized monomer and polymers were identified by Fourier transform infrared, 1H NMR, and 13C NMR spectroscopy and elemental analysis. The ETFU contents in poly(ETFU‐co‐AA) and poly(ETFU‐co‐VAc) were 26 mol % and 26 mol %, respectively. The number‐average molecular weights of the polymers, as determined by gel permeation chromatography, ranged from 5600 to 17,000. The in vitro cytotoxicities of 5‐FU and the synthesized samples against mouse mammary carcinoma and human histiocytic lymphoma cancer cell lines increased in the following order: ETFU > 5‐FU > poly(ETFU‐co‐AA) > poly(ETFU) > poly(ETFU‐co‐VAc). The in vivo antitumor activities of the polymers against Balb/C mice bearing the sarcoma 180 tumor cells were greater than those of 5‐FU at all doses tested. The inhibitions of the samples for SV40 DNA replication and antiangiogenesis were much greater than the inhibition of the control. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4272–4281, 2000  相似文献   

10.
A novel high energy material, 1‐amino‐1‐methylamino‐2,2‐dinitroethlyene (AMFOX‐7), was synthesized by the reaction of 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7) and methylamine aqueous solution in N‐methyl pyrrolidone at 80°C. The thermal behavior and non‐isothermal decomposition kinetics of AMFOX‐7 were studied with DSC and TG/DTG methods. The kinetic equation of thermal decomposition reaction can be expressed as: $ {\rm d\alpha /d}T = \frac{{10^{21.03}}}{{\rm \beta}}\frac{3}{2}\left({1 - {\rm \alpha}} \right)\left[{- 1{\rm n}\left({{\rm 1} - {\rm \alpha}} \right)} \right]^{\frac{1}{3}} \exp \left({- 2.292 \times 10^5 {\rm /}RT} \right) A novel high energy material, 1‐amino‐1‐methylamino‐2,2‐dinitroethlyene (AMFOX‐7), was synthesized by the reaction of 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7) and methylamine aqueous solution in N‐methyl pyrrolidone at 80°C. The thermal behavior and non‐isothermal decomposition kinetics of AMFOX‐7 were studied with DSC and TG/DTG methods. The kinetic equation of thermal decomposition reaction can be expressed as: $ {\rm d\alpha /d}T = \frac{{10^{21.03}}}{{\rm \beta}}\frac{3}{2}\left({1 - {\rm \alpha}} \right)\left[{- 1{\rm n}\left({{\rm 1} - {\rm \alpha}} \right)} \right]^{\frac{1}{3}} \exp \left({- 2.292 \times 10^5 {\rm /}RT} \right) $. The critical temperature of thermal explosion of AMFOX‐7 is 244.89°C. The specific heat capacity of AMFOX‐7 was determined with micro‐DSC method and theoretical calculation method, and the standard molar specific heat capacity is 199.39 J·mol?1·K?1 at 298.15 K. Adiabatic time‐to‐explosion of AMFOX‐7 was also calculated to be 215.41 s. AMFOX‐7 has higher thermal stability than FOX‐7.  相似文献   

11.
A novel and efficient isocyanide‐based multicomponent reaction between alkyl or aryl isocyanides 1 , 2,3‐diaminomaleonitrile ( 2 ), naphthalene‐2,3‐diamines ( 6 ) or benzene‐1,2‐diamine ( 9 ), and 3‐oxopentanedioic acid ( 3 ) or Meldrum's acid ( 4 ) or ketones 7 was developed for the ecologic synthesis, at room temperature under mild conditions, of 1,6‐dihydropyrazine‐2,3‐dicarbonitriles 5a – 5f in H2O without using any catalyst, and of 3,4‐dihydrobenzo[g]quinoxalin‐2‐amine and 3,4‐dihydro‐3,3‐dimethyl‐quinoxalin‐2‐amine derivatives 8a – 8g and 10a – 10e , respectively, in the presence of a catalytic amount of p‐toluenesulfonic acid (TsOH) in EtOH, in good to excellent yields (Scheme 1).  相似文献   

12.
Cyanothioacetamide ( 1 ) reacted with but‐2‐enal ( 2 ) to give the corresponding 4‐methyl‐2‐sulfanylpyridine‐3‐carbonitrile ( 7 ) which was used as a good starting material for the synthesis of 1‐(3‐amino‐4‐methylthieno[2,3‐b]pyridin‐2‐yl)ethan‐1‐one ( 10 ), 3‐amino‐4‐methylthieno[2,3‐b]pyridine‐2‐carboxamide ( 15 ), 3‐amino‐4‐methylthieno[2,3‐b]pyridine‐2‐carboxylate ( 18 ) and 3‐amino‐4‐methylthieno[2,3‐b]pyridin‐2‐ylarylketone 25a‐c through its reactions with each of (1‐chloroacetone ( 8 ), 3‐chloropentane‐2,4‐dione ( 11 ) or ethyl 2‐chloro‐3‐oxo‐butanoate ( 19 )), 2‐chloroacetamide ( 13 ), ethyl 2‐chloroacetate ( 16 ) and 2‐bromo‐1‐arylethan‐ 1 ‐one 23a‐c , respectively. Considering the data of elemental analyses, IR, 1HNMR, mass spectra and theoretical calculations, structures of the newly synthesized heterocyclic compounds were elucidated.  相似文献   

13.
A novel conversion of 2, 4‐diaryl‐2, 3‐dihydro‐1 H‐1, 5‐benzodiazepins into 2, 4‐diaryl‐3 H‐1, 5‐benzodiazepines by the reaction with m‐chloroperbenzoic acid (MCPBA) was reported.  相似文献   

14.
15.
A straightforward approach toward 6‐bromo‐2‐isopropylidenecoumaranone, a potential intermediate toward alkaloid TMC 120‐B, pseudodeflectusin, and other natural products, was reported. The synthetic sequence involved the reaction of 3‐bromosalicylaldehyde with chloroacetone and cyclization of the resulting ether to a 2‐acetylcoumaranol intermediate. This was followed by sequential methyl Grignard addition and Jones’ oxidation to the corresponding coumaranone, which was dehydrated to the final product with the methanesulfonyl chloride/pyridine reagent. The protection of the coumaranol as the corresponding THP‐ether resulted in improved product yields.  相似文献   

16.
A simple and efficient one‐pot synthesis of alkyl‐2‐(alkylimino)‐4‐methyl‐3‐phenyl‐2,3‐dihydrothiazole‐5‐carboxylate and dialkyl 3,3′‐(1,4‐phenylene)‐bis‐[2‐(alkylimino)‐4‐methyl‐2,3‐dihydrothiazole‐5‐carboxylate] derivatives from the reaction of phenylisothiocyanate (and also 1,4‐phenylene diisothiocyanate) and primary alkylamines in the presence of 2‐chloro‐1,3‐dicarbonyl compounds is described. This new protocol has several advantages such as lack of necessity of the catalyst and solvent, good yields,mild conditions and short times for reaction.  相似文献   

17.
The title compound 1 was prepared from L ‐leucine. The key steps include a Grignard addition to Bn2‐leucinal, a CO/CF2 replacement with Et2NSF3 (DAST) and use of a Ph group as synthetic equivalent of a COOH group. The difluoro‐δ‐amino acid 1 was incorporated into a peptide 8 ; tests with various proteases showed no inhibition by this particular peptide.  相似文献   

18.
4Aryl‐8‐fluoro‐3a,4,5,9b‐tetrahydro‐3H‐cyclopenta[c]quinolines are synthesized by acid‐catalyzed (CF3CO2H) three‐component cyclocondensation of 4‐fluoroaniline with aromatic aldehydes and cyclopentadiene. Stable ozonides with (1R*,4S*,5aR*,6S*,11bS*)‐configurations are obtained by ozonolysis of corresponding trifluoroacetyl derivatives.  相似文献   

19.
《中国化学会会志》2017,64(9):1088-1095
In this work, poly(N,N ′‐dibromo‐N ‐ethylnaphtyl‐2,7‐sulfonamide) (PDNES ) as a highly efficient catalyst was applied for the synthesis of 1,8‐dioxo‐octahydroxanthenes and tetra‐hydrobenzo[a]xanthene‐11‐ones under neutral and solvent‐free conditions.  相似文献   

20.
The mass spectrometric behaviour of four cis‐ and trans‐1a,3‐disubstituted‐1,1‐dichloro‐4‐formyl‐1a,2,3,4‐tetrahydro‐1H‐azirino [1, 2‐a][1,5]benzodiazepines has been studied with the aid of mass‐analysed ion kinetic energy spectrometry and exact mass measurements under electron impact ionization. All compounds show a tendency to eliminate a chlorine atom from the aziridine ring, and then eliminate a neutral propene or styrene from the diazepine ring to yield azirino [1,2‐b][1,3] benzimidazole ions. These azirino [1,2‐a][1,5]‐benzodiazepimes can also eliminate HCl, or Cl plus HCl simultaneously to undergo a ring enlargement rearrangement to yield 1,6‐benzodiazocine ions, which further lose small molecular fragments, propyne or phenylacetylene, with rearrangement to give quinoxaline ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号