首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New deep‐red light‐emitting phosphorescent dendrimers with hole‐transporting carbazole dendrons were synthesized by reacting tris(2‐benzo[b]thiophen‐2‐yl‐pyridyl) iridium (III) complex with carbazolyl dendrons by DCC‐catalyzed esterification. The resulting first‐, second‐, and third‐generation dendrimers were found to be highly efficient as solution‐processable emitting materials and for use in host‐free electrophosphorescent light‐emitting diodes. We fabricated a host‐free dendrimer EL device with configuration ITO/PEDOT:PSS (40 nm)/dendrimer (55 nm)/BCP (10 nm)/Alq3 (40 nm)/LiF (1 nm)/Al (100 nm) and characterized the device performance. The multilayered devices showed luminance of 561 cd/m2 at 383.4 mA/cm2 (12 V) for 15 , 1302 cd/m2 at 321.3 mA/cm2 (14 V) for 16 , and 422 cd/m2 at 94.4 mA/cm2 (18 V) for 17 . The third‐generation dendrimer, 17 (ηext = 6.12% at 7.5 V), showed the highest external quantum efficiency (EQE) with an increase in the density of the light‐harvesting carbazole dendron. Three dendrimers exhibited considerably pure deep‐red emission with CIE 1931 (Commission International de L'Eclairage) chromaticity coordinates of x = 0.70, y = 0.30. The CIE coordinates remained very stable with the current density. The integration of rigid hole‐transporting dendrons and phosphorescent complexes provides a new route to design highly efficient solution‐processable materials for dendrimer light‐emitting diode (DLED) applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7517–7533, 2008  相似文献   

2.
A series of thiophene‐containing photoactive copolymers consisting of alternating conjugated and nonconjugated segments were synthesized. The 1H NMR spectra corroborated the well‐defined structures, and the copolymers not only were soluble in common organic solvents but also had high glass‐transition temperatures (ca. 130 °C) and good thermal stability up to 390 °C. Introducing aliphatic functional groups, such as alkyl or alkoxyl, into chromophores of the copolymers redshifted the photoluminescence spectra and lowered the optical bandgaps. The electrochemical bandgaps calculated from cyclic voltammetry agreed with the optical bandgaps and thus indicated that electroluminescence and photoluminescence originated from the same excited state. The energy levels (highest occupied molecular orbital and lowest unoccupied molecular orbital) of all the copolymers were lower than those of poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1.4‐phenylenevinylene] MEH–PPV, indicating balanced hole and electron injection, which led to improved performance in both single‐layer and double‐layer polymeric‐light‐emitting‐diode devices fabricated with these copolymers. All the copolymers emitted bluish‐green or green light above the threshold bias of 5.0 V under ambient conditions. At the maximum bias of 10 V, the electroluminescence of a device made of poly(2‐{4‐[2‐(3‐ethoxy phenyl)ethylene]phenyl}‐5‐{4‐[2‐(3‐ethoxy,4‐1,8‐octanedioxy phenyl)ethylene]phenyl}thiophene) was 5836 cd/m2. The external electroluminescence efficiency decreased with the lifetime as the polymer degraded. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3954–3966, 2004  相似文献   

3.
Several series of light‐emitting oligo(p‐phenylene‐vinylene)s (BIII and BV series containing three‐ and five‐conjugated phenylene rings) with various side groups and end groups attached to the cores were synthesized and characterized. The analogous PBV polymers, derived from the BV series, were also synthesized and investigated. Blue and greenish light emissions were observed in the photoluminescence (PL) and electroluminescence (EL) spectra of the blend and pure films with these π‐conjugated structures. In contrast to the three‐conjugated ring oligomers, the five‐conjugated ring derivatives (oligomers and polymers) had larger maximum emission wavelength values of PL and EL emissions. Mesomorphism was introduced into the BV series by the replacement of three‐conjugated rings (BIII series) with five‐conjugated phenyl cores (BV series). The liquid‐crystalline properties of the BV series with end groups (on both end rings) were better than those of analogous BV‐OC8 without end groups. Polarized PL emissions were obtained by the alignment of liquid‐crystalline phase in rubbing cells. Upon heating, different PL emission wavelengths and intensities were observed in various phases. Not only the solubility and thermal properties but also the PL and EL properties could be effectively adjusted by the attachment of flexible alkoxy groups either on the central rings or on both end rings of the conjugated cores. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 783–800, 2006  相似文献   

4.
An electroluminescent polymer was synthesized by Wittig condensation and characterized by the measurements of 1H‐NMR, IR, gel permeation chromatography (GPC), UV–Vis, PL, and cyclic voltammetry (CV). The polymer can be dissolved in common organic solvents such as tetrahydrofuran (THF), chloroform, and dichloromethane. The electroluminescent investigation showed that the non‐doped devices with a double‐layer configuration (ITO/PEDOT:PSS/Polymer/Mg:Ag) have a stable green emission property. The maximum luminance of the annealed device reaches 2317 cd/m2. The emission maximum and the CIE 1931 coordinate values are respectively stabilized at 552 nm and near (x, y) = (0.43, 0.55) with different voltages. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
A novel blue‐emitting polymer based on 3,6‐silafluorene and 2,7‐silafluorene was synthesized via the Suzuki polycondensation. The resulting polymers are readily soluble in common organic solvents, such as toluene, xylene, THF, and chloroform. The thermal, electrochemical, photophysical, and electroluminescence properties of the resulting polymers were investigated. The device fabricated from the copolymer with a configuration of ITO/PEDOT:PSS/PVK/polymer/Ba/Al exhibited an external quantum efficiency of 1.95%, a luminous efficiency of 1.69 cd A?1 and a maximal brightness of 6000 cd m?2. It has been found that the incorporation of the 3,6‐silafluorene unit into the poly(2,7‐silafluorene) main chain can not only improve the color purity of the devices from the resulting copolymer but also enhance its device efficiency. Moreover, no undesired long‐wavelength green emission was observed in the PL spectra of P36‐27SiF90 compared to that of PFO with a dominating emission at 500–600 nm after thermal annealing at 200 °C for 8 h. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4941–4949, 2007  相似文献   

6.
Two new orange red light‐emitting hyperbranched and linear polymers, poly(pyridine phenylene)s P1 and P2, were prepared by the Heck coupling reaction. In particular, an A2 + B3 approach was developed to synthesize conjugated hyperbranched polymer P2 via one‐pot polycondensation. The polymers were characterized by NMR, Fourier transform infrared, ultraviolet–visible, and elemental analysis. They showed excellent solubility in common solvents such as tetrahydrofuran, CH2Cl2, CHCl3, and N,N‐dimethylformamide and had high molecular weights (up to 6.1 × 105 and 5.8 × 105). Cyclic voltammetry studies revealed that P2 had a low‐lying lowest unoccupied molecular orbital energy level of ?3.22 eV and a highest occupied molecular orbital energy level of ?5.43 eV. The thin film of P2 emitted strong orange‐red photoluminescence at 595 nm. A double‐layer light‐emitting diode fabricated with the configuration of indium tin oxide/P2/tris(8‐hydroxy‐quinoline)aluminum/Al emitted orange‐red light at 599 nm, with a brightness of 662 cd/m2 at 7 V and a turn‐on voltage of 4.0 V; its external quantum efficiency was calculated to be 0.19% at 130.61 mA/cm2. This indicated that this new electroluminescent polymer (P2) based on 3,5‐dicyano‐2,4,6‐tristyrylpyridine could possibly be used as an orange‐red emitter in polymer light‐emitting displays. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 493–504, 2005  相似文献   

7.
The thermal behavior and kinetic parameters of the exothermic decomposition reaction of N‐N‐bis[N‐(2,2,2‐tri‐nitroethyl)‐N‐nitro]ethylenediamine in a temperature‐programmed mode have been investigated by means of differential scanning calorimetry (DSC). The results show that kinetic model function in differential form, apparent activation energy Ea and pre‐exponential factor A of this reaction are 3(1 ‐α)2/3, 203.67 kJ·mol?1 and 1020.61s?1, respectively. The critical temperature of thermal explosion of the compound is 182.2 °C. The values of ΔS ΔH and ΔG of this reaction are 143.3 J·mol?1·K?1, 199.5 kJ·mol?1 and 135.5 kJ·mol?1, respectively.  相似文献   

8.
To study the effect of nonconjugation on polymeric and photophysical properties of thiophene‐containing polymers, new light‐emitting copolymers comprising either alternate 2,5‐diphenylthiophene and vinylene or alternate 2,5‐diphenylthiophene and aliphatic ether segments were synthesized. Both copolymers contained 2,5‐diphenylthiophene as the major chromophore and emitted a sky bluish fluorescence in dilute solution (10?2 mg/mL). With a rigid and planarity structure and the concomitant crystallinity, the former copolymer (fully conjugated) possessed a higher quantum efficiency, a higher glass‐transition temperature, and a better thermal stability. In contrast, the latter copolymer (conjugated–nonconjugated) had better solubility and provided enhanced photophysical properties for the fabricated polymeric light‐emitting diode (PLED) device: at 15 V, the maximum current and brightness were 110 mA/cm2 and 4289 cd/m2, respectively, and the electroluminescence efficiency remained constant at approximately 4.9 cd/A in a voltage range of 8 to 14 V. The existence of intramolecular/intermolecular aggregates in the latter copolymer was corroborated from the the UV–vis and photoluminescence spectra of its solutions. With an increase in solution concentration, the shape and λmax of the photoluminescence spectrum were redshifted. In a solution with a concentration as high as 10 mg/mL, the redshift was so drastic that the photoluminescence spectrum was nearly identical to that of a solid‐film. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6061–6070, 2004  相似文献   

9.
An indenofluorene‐based copolymer containing blue‐, green‐, and red light‐emitting moieties was synthesized by Suzuki polymerization and examined for application in white organic light‐emitting diodes (WOLEDs). Tetraoctylindenofluorene (IF), 2,1,3‐benzothiadiazole (BT), and 4,7‐bis(2‐thienyl)‐2,1,3‐benzothiadiazole (DBT) derivatives were used as the blue‐, green‐, and red‐light emitting structures, respectively. The number‐average molecular weight of the polymer was determined to be 25,900 g/mol with a polydispersity index of 2.02. The polymer was thermally stable (Td = ~398 °C) and quite soluble in common organic solvents, forming an optical‐quality film by spin casting. The EL characteristics were fine‐tuned from the single copolymer through incomplete fluorescence energy transfer by adjusting the composition of the red/green/blue units in the copolymer. The EL device using the indenofluorene‐based copolymer containing 0.01 mol % BT and 0.02 mol % DBT units ( PIF‐BT01‐DBT02 ) showed a maximum brightness of 4088 cd/m2 at 8 V and a maximum current efficiency of 0.36 cd/A with Commission Internationale de L'Eclairage (CIE) coordinates of (0.34, 0.32). The EL emission of PIF‐BT01‐DBT02 was stable with respect to changes in voltage. The color emitted was dependent on the thickness of the active polymer layer; layer (~60 nm) too thin was unsuitable for realizing WOLED via energy transfer. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3467–3479, 2009  相似文献   

10.
We have synthesized a series of PPV copolymers and investigated the relationships between their chemical structures, thermal stabilities, and optoelectronic properties. Initially, we monitored the effects of the end group and the molecular weight on the behavior of polymer light emitting diodes (PLEDs) prepared from a series of oligo(phenylenevinylene) (OPV)‐fluorene luminescent copolymers. We found that the nature of the end‐capping group was an important factor affecting the luminescence properties of devices, which were improved especially when applying a triphenylamine end group. The molecular weight mainly affected the film quality of the manufactured device; that is, it improved to a certain degree when the molecular weight increased. Based on the luminescence conversion mechanism, we used a simple spin‐coating process to fabricate a high‐efficiency LED displaying white‐light CIE 1931 (coordinates of 0.31, 0.34). The device exhibited a high current‐efficiency of 3.5 cd/A and a brightness of 973 cd/m2. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4504–4513, 2007  相似文献   

11.
12.
A series of new low band gap π‐conjugated polymers containing N‐alkyldithieno[3,2‐b:2′,3′‐d]pyrrole, benzo[c][1,2,5]thiadiazole, and alkylthiophenes are reported. The polymerization condition was standardized and the use of CuO to obtain high‐molecular‐weight polymer was also realized. The molecular weight of the polymers was found to be in the range of 45,000–53,000. All the polymers were found to be soluble in most of the common organic solvents, such as chloroform, dichloromethane, THF, and chlorobenzene with excellent film forming properties. The λmax of the polymers was found to be in the range of 687–663 nm with band gap in the range of 1.35–1.43 eV. The oxidation potential of the polymers from cyclic voltammetry was determined to be 0.5–0.75 V. The HOMO levels of the above synthesized polymers were found to be between 5.24 and 5.54 eV. All the polymers exhibited a PL emission in between 755 and 773 nm. The polymers were found to be thermally stable above 277 °C with only a 5% weight loss. From the thermal stability values, it is expected that the current set of polymers are stable enough for the application in electronic devices. To realize the potential use of the polymers, EL devices were fabricated and found to show red emission with comparatively low threshold voltage. A brightness of 54 cd m−2 for the device with polymer PC could be reached. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6514–6525, 2009  相似文献   

13.
A novel phenothiazine‐based polymer was synthesized through the Heck reaction of 3,7‐divinyl‐N‐octyl‐phenothiazine with 4,7‐dibromo‐2‐octylbenzotriazole according to the alternating donor–acceptor strategy. The polymer was characterized with 1H NMR, infrared spectroscopy, gel permeation chromatography, cyclic voltammetry, ultraviolet–visible spectroscopy, and fluorescence spectroscopy. With the polymer used as an active layer, three nondoped polymer light‐emitting diodes (PLEDs) with a double‐layer configuration were fabricated by the spin‐coating approach with different thermal annealing processes. The emission maximum in electroluminescent spectra was stabilized at 616 nm. The maximum luminance reached 2432 cd/m2. The coordinate value of Commission International de l'Eclairage 1931 in the double‐layer PLEDs after the thermal treatment was nearly stabilized at (x, y) =(0.62, 0.38). Additionally, the luminous efficiency of device II reached a balanceable state with an increase in the current. Therefore, the polymer had an orange‐red emission with stable chromaticity coordinates under different driving voltages. Finally, a nondoped device with a stable luminous efficiency and chromaticity was obtained. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4867–4878, 2007  相似文献   

14.
A comprehensive numerical device simulation of the electrical and optical characteristics accompanied with experimental measurements of a new highly efficient system for polymer‐based light‐emitting diodes doped with phosphorescent dyes is presented. The system under investigation comprises an electron transporter attached to a polymer backbone blended with an electronically inert small molecule and an iridium‐based green phosphorescent dye which serves as both emitter and hole transporter. The device simulation combines an electrical and an optical model. Based on the known highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels of all components as well as the measured electrical and optical characteristics of the devices, we model the emissive layer as an effective medium using the dye's HOMO as hole transport level and the polymer LUMO as electron transport level. By fine‐tuning the injection barriers at the electron and hole‐injecting contact, respectively, in simulated devices, unipolar device characteristics were fitted to the experimental data. Simulations using the so‐obtained set of parameters yielded very good agreement to the measured current–voltage, luminance–voltage characteristics, and the emission profile of entire bipolar light‐emitting diodes, without additional fitting parameters. The simulation was used to gain insight into the physical processes and the mechanisms governing the efficiency of the organic light‐emitting diode, including the position and extent of the recombination zone, carrier concentration profiles, and field distribution inside the device. The simulations show that the device is severely limited by hole injection, and that a reduction of the hole‐injection barrier would improve the device efficiency by almost 50%. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

15.
A series of novel styrene derived monomers with triphenylamine‐based units, and their polymers have been synthesized and compared with the well‐known structure of polymer of N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine with respect to their hole‐transporting behavior in phosphorescent polymer light‐emitting diodes (PLEDs). A vinyltriphenylamine structure was selected as a basic unit, functionalized at the para positions with the following side groups: diphenylamine, 3‐methylphenyl‐aniline, 1‐ and 2‐naphthylamine, carbazole, and phenothiazine. The polymers are used in PLEDs as host polymers for blend systems with the following device configuration: glass/indium–tin–oxide/PEDOT:PSS/polymer‐blend/CsF/Ca/Ag. In addition to the hole‐transporting host polymer, the polymer blend includes a phosphorescent dopant [Ir(Me‐ppy)3] and an electron‐transporting molecule (2‐(4‐biphenyl)‐5‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazole). We demonstrate that two polymers are excellent hole‐transporting matrix materials for these blend systems because of their good overall electroluminescent performances and their comparatively high glass transition temperatures. For the carbazole‐substituted polymer (Tg = 246 °C), a luminous efficiency of 35 cd A?1 and a brightness of 6700 cd m?2 at 10 V is accessible. The phenothiazine‐functionalized polymer (Tg = 220 °C) shows nearly the same outstanding PLED behavior. Hence, both these polymers outperform the well‐known polymer of N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine, showing only a luminous efficiency of 7.9 cd A?1 and a brightness of 2500 cd m?2 (10 V). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3417–3430, 2010  相似文献   

16.
Poly[N‐(9‐fluorenylmethoxycarbonyl)‐L‐phenylalanine] (PN9FPA) films with good fluorescence properties and chirality were prepared electrochemically by direct anodic oxidation of N‐(9‐fluorenylmethoxycarbonyl)‐L‐phenylalanine (N9FPA) in boron trifluoride diethyletherate (BFEE). Fourier transform infrared spectroscopy measurement showed that the polymerization of N9FPA occurred mainly at the C(2) and C(7) positions. The fluorescence spectra indicated that PN9FPA films were blue‐light emitters. In addition, the structures and properties of the monomer and the polymers were characterized and evaluated with CV, UV, TGA and SEM.  相似文献   

17.
18.
A new series of fluorene‐based polyquinoxalines with an ether linkage in the main chain were prepared by the polycondensation reaction between a tetraketone monomer and 3,3′,4,4′‐tetraaminodiphenyl ether. The polycondensation was usually carried out in m‐cresol. The resulting polymers ( P1 – P3 ) [ P1 = poly(quinoxaline‐co‐9,9‐dihexyl‐2,7‐dimethyl‐9H‐fluorene) P2 = poly(quioxaline‐co‐9,9‐dihexyl‐9‐pentyl‐2,7‐di‐p‐tolyl‐9H‐fluorene) P3 = poly(quioxaline‐co‐9,9‐bis‐(4‐methoxy‐phenyl)‐2,7‐dimethyl‐9H‐fluorene)] showed good solubility in common organic solvents and high thermal stability with only a 5% weight loss up to 440 °C. P1 and P2 had very high glass‐transition temperatures of 212 and 223 °C, respectively, whereas P3 did not show any phase‐transition temperature in repeated scans up to 300 °C. All the polymers in photoluminescence showed blue emissions in the range of 432–465 nm, both in chloroform solutions and in thin films. Light‐emitting diode devices of the configuration indium tin oxide/poly(3,4‐ethylenedioxythiophene)/polymer:poly(N‐vinylcarbazole) blend (2:8)/LiF/Al were fabricated with P1 or P2 and emitted blue light with electroluminescence peak wavelengths of 434 and 448 nm, respectively. The maximum brightness and the external quantum efficiency of P1 were 0.56 μW/cm2 at 29 V and 0.056%, whereas P2 showed 0.50 μW/cm2 at 34 V and a relatively low value of 0.015%, respectively. Cyclic voltammetry studies revealed that these polymers possessed low‐lying ionization potential energy levels ranging from ?5.49 to ?5.86 eV and low‐lying electron affinity energy levels ranging from ?2.65 to ?2.88 eV. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1189–1198, 2006  相似文献   

19.
We have synthesized, using the Gilch method, a novel poly(p‐phenylenevinylene) derivative (PPV‐PP) containing two pendent pentaphenylene dendritic wedges, and have characterized its structure and properties. The incorporated side chain pentaphenylene dendrons serve as solubilizing groups, prevent π‐stacking interactions from occurring between the polymer main chains, and suppress the formation of excimers in the solid state. Photoluminescence studies indicate that efficient intramolecular energy transfer occurred from the photoexcited pentaphenylene groups to the poly(p‐phenylenevinylene) backbone. The polymer film exhibits a maximum emission at 510 nm and had a photoluminescence efficiency of 46%, which is similar to that measured in dilute solution. The photoluminescence spectra remained almost unchanged after thermal annealing at 150 °C for 20 h, and displayed inhibited excimer formation. Polymer light‐emitting diodes that we fabricated in the configuration ITO/PEDOT/PPV‐PP/Mg:Ag/Ag exhibited a maximum emission peak at 513 nm, corresponding to the green region [x = 0.30 and y = 0.62 in the Commission Internationale de L'Eclairage (CIE) chromaticity coordinates]. The maximum brightness and maximum luminance efficiency were 1562 cd/m2 and 1.93 cd/A, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5147–5155, 2005  相似文献   

20.
Two series of new copolyfluorenes ( PFTP, PFTT ) were prepared by the Suzuki coupling reaction from two green‐emitting dibromo monomers (TP‐Br, TT‐Br) based on triphenylamine unit to be applied in white light electroluminescent devices. They were characterized by molecular weight determination, elemental analysis, DSC, TGA, absorption and photoluminescence spectra, and cyclic voltammetry. The estimated actual contents of the TP and TT chromophores were lower than 7.8 mol % and 1.9 mol % for PFTP and PFTT , respectively. In film state both copolyfluorenes showed photoluminescence at 400–470 and 470–600 nm originated from fluorene segments and the chromophores, respectively, due to incomplete energy transfer. Light‐emitting diodes with a structure of ITO/PEDOT:PSS/copolymer/Ca(50 nm)/Al(100 nm) showed major emission at 493–525 nm, plus minor emission at 400–470 nm when chromophore contents were low. The maximum brightness and maximum current efficiency of PFTP2 device were 8370 cd/m2 and 1.47 cd/A, whereas those of PFTT1 device were 9440 cd/m2 and 1.77 cd/A, respectively. Tri‐wavelength white‐light emission was realized through blending PFTT1 with poly(9,9‐dihexylfluorene) and a red‐emitting iridium complex, in which the maximum brightness and CIE coordinates were 6880 cd/m2 and (0.31, 0.33), respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1553–1566, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号