首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly ordered Pd/Pt–core–shell nanowire arrays (Pd/Pt NWAs) have been prepared by anodized aluminum oxide (AAO) template-electrodeposition and magnetron sputtering methods. Pd/Pt NWA electrode shows a very high electrochemical active surface area and high electrocatalytic activity for the methanol electrooxidation in acid medium for direct methanol fuel cells (DMFCs). The mass specific anodic peak current density is 756.7 mA mg−1 Pt for the methanol oxidation on the Pd/Pt NWA electrode, an increase by a factor of four as compared to conventional E-TEK PtRu/C electrocatalysts. The mechanism of the significant enhancement of the Pd/Pt core/shell NWA nanostructure in the efficiency and electrocatalytic activity of Pt for the methanol electrooxidation in acid medium is discussed.  相似文献   

2.
A low temperature approach via the complexing of PdCl2 with EDTA followed by NaBH4 reduction has been used to prepare Vulcan XC-72 carbon-supported Pd nanoparticles (Pd/C). The mean particle size of the Pd/C catalysts is found to increase from 3.3 to 9.2 nm with heat-treated temperature. TEM images demonstrated that the Pd nanoparticles are well dispersed on the support with a relatively narrow particle size distribution. A correlation between the electrocatalytic activity of formic acid oxidation and particle size of the Pd/C catalysts indicates that the highest activity of formic acid oxidation is found with a Pd mean particle size of ca. 4.7 nm. The preparation method used here is cost-effective and should be easily scaled for industrial production.  相似文献   

3.
Pd and PdNi nanoparticles supported on Vulcan XC-72 carbon were prepared by a chemical reduction with formic acid process. The catalysts were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry, and chronoamperometry. The results showed that the Pd and PdNi nanoparticles, which were uniformly dispersed on carbon, were 2–10 nm in diameters. The PdNi/C catalyst has higher electrocatalytic activity for methanol oxidation in alkaline media than a comparative Pd/C catalyst and shows great potential as less expensive electrocatalyst for methanol electrooxidation in alkaline media in direct methanol fuel cells.  相似文献   

4.
Platinum submonolayer decorated gold nanorods with controlled coverage were prepared by the addition of Au nanorods into the growth solution of Pt in the presence of NH2OH · HCl as the growth agent. The properties of Au nanorods decorated by Pt submonolayer were investigated by various techniques including transimission electron microscopy, X-ray diffraction, and electrochemical methods. The Pt decorated Au nanorods on carbon black showed significantly higher activity on formic acid electrooxidation than the conventional Pt/C catalysts. They showed different reaction path of formic acid electrooxidation by suppressing the formation of poisoning intermediate CO.  相似文献   

5.
Pd and bimetallic PdRu nanoparticles supported on Vulcan XC-72 carbon prepared by the microwave-assisted polyol process are examined as electrocatalysts for the electrooxidation of formic acid. The catalysts are characterized by transmission electron microscopy and X-ray diffraction. The Pd and PdRu nanoparticles with sizes of <10 nm display the characteristic diffraction peaks of a Pd face-centered cubic (fcc) crystal structure. It is found that the addition of Ru to Pd/C can decrease the lattice parameter of Pd (fcc) crystal. The electrocatalytic activities of the catalysts are evaluated in sulfuric acid solution containing 1 M formic acid using linear sweeping voltammetry and chronoamperometry. The results show that Pd5Ru1/C displays the best electrocatalytic performance among all catalysts for formic acid electrooxidation.  相似文献   

6.
A novel colloid method using (WO3)n·xH2O as colloidal source was developed to prepare Pd/C catalyst for formic acid oxidation. Transmission electron microscopy image shows that the Pd/C nanoparticles have an average size of 3.3 nm and a narrow size distribution. Electrochemical measurements indicate that the Pd/C catalyst exhibits significantly high electrochemical active surface area and high catalytic activity with good stability for formic acid oxidation compared with that prepared by common method. The colloid method is very simple and has great potentials for mass-producing Pd/C and others noble metal catalysts.  相似文献   

7.
PdCu/C (XC-72) electrocatalyst was synthesized by a chemical reduction method using ethylene glycol as reaction media, polyvinylpyrrolidone as surfactant and sodium borohydride as reducing agent. Vulcan carbon XC-72 was employed as support and added through the PdCu synthesis procedure; further, Pd commercial (Pd/C, 20% ETEK) was used for comparison purposes. Physicochemical characterization consisted in XRD, XRF, EDS and TEM analyses. TEM micrographs showed the presence of semi-spherical nanoparticles with a particle distribution around 6 nm. X-ray diffraction patterns showed the typical face-centered cubic structure of Pd materials for commercial Pd and revealed a low crystallinity for PdCu/C. The XRF analysis showed a mass metal composition of 81% Pd and 19% Cu. EDS analysis was made to single particles exhibiting an average elemental composition of 92% Pd and 8% Cu. The electrocatalytic activity of PdCu/C and Pd/C was evaluated by cyclic voltammetry experiments toward ethylene glycol and glycerol oxidations using three concentrations (0.1, 1 and 3 M) and 0.3 M KOH as electrolyte. These experiments exhibited the superior performance of PdCu compared with commercial Pd by means of current densities associated to the electro-oxidation reactions where values at least 3-fold higher than Pd/C were found.  相似文献   

8.
A systematic study on the electrocatalytic properties of Pt nanoparticles supported on nitrobenzene-modified graphene (Pt-NB/G) as catalyst for oxygen reduction reaction (ORR) in alkaline solution was performed. Graphene nanosheets were spontaneously grafted with nitrophenyl groups using 4-nitrobenzenediazonium salt. The electrocatalytic activity towards the ORR and stability of the prepared catalysts in 0.1 M KOH solution have been studied and compared with that of the commercial Pt/C catalyst. The results obtained show that the NB-modified graphene nanosheets can be good Pt catalyst support with high stability and excellent electrocatalytic properties. The specific activity of Pt-NB/G for O2 reduction was 0.184 mA cm−2, which is very close to that obtained for commercial 20 wt% Pt/C catalyst (0.214 mA cm−2) at 0.9 V vs. RHE. The Pt-NB/G hybrid material promotes a four-electron reduction of oxygen and can be used as a promising cathode catalyst in alkaline fuel cells.  相似文献   

9.
《Comptes Rendus Chimie》2015,18(10):1143-1151
Two series of carbon-supported Pd–Au catalysts were prepared by the reverse “water-in-oil, W/O” method, characterized by various techniques and investigated in the reaction of tetrachloromethane with hydrogen at 423 K. The synthesized nanoparticles were reasonably monodispersed having an average diameter of 4–6 nm (Pd/C and Pd–Au/C) and 9 nm (Au/C). Monometallic palladium catalysts quickly deactivated during the hydrodehalogenation of CCl4. Palladium–gold catalysts with molar ratio Pd:Au = 90:10 and 85:15 were stable and much more active than the monometallic palladium and Au-richer Pd–Au catalysts. The selectivity toward chlorine-free hydrocarbons (especially for C2+ hydrocarbons) was increased upon introducing small amounts of gold to palladium. Simultaneously, for the most active Pd–Au catalysts, the selectivity for undesired dimers C2HxCly, which are considered as coke precursors, was much lower than for monometallic Pd catalysts. Reasons for synergistic effects are discussed. During CCl4 hydrodechlorination the Pd/C and Pd–Au/C catalysts were subjected to bulk carbiding.  相似文献   

10.
PtRu 1D nanostructures on titanium are prepared and analysed as electrocatalysts for methanol electrooxidation. The morphology and composition of the 1D nanostructure are characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The electrocatalytic properties of such catalysts for methanol oxidation are investigated by cyclic voltammetry (CV) and chronoamperometry (CA) in 1.0 M CH3OH + 0.5 M H2SO4 aqueous solution. The results show that Pt46Ru54 nanotubes yields to a five-fold improvement of the mass specific activity and to a three-fold improvement of the long-term poisoning rate as compared to PtRu black of similar composition.  相似文献   

11.
PdCo–C catalyst was synthesized through a simple simultaneous reduction reaction with sodium borohydride in aqueous solution. Inductive coupled plasma emission spectrometer (ICP) and X-ray diffraction (XRD) technologies had been used to characterize the PdCo–C catalyst and proved that the amount of Co was 1.5 wt%, PdCo alloy was formed and possessed face-centered cubic (fcc) crystalline structure, and the average particle size was about 5.1 nm. The electrochemical tests (cyclic voltammetry (CV) and chronoamperometry (CA)) showed that the addition of Co could significantly improve the electrocatalytic activity and stability. The enhancement of electrocatalytic activity and stability was mainly ascribed to the interaction between Pd and additive Co, which facilitated the oxidation reaction of formic acid in direct pathway.  相似文献   

12.
Hydrodeoxygenation of oleic acid as model compound of vegetable oils over Pd/zeolite catalysts was investigated under conditions of 375−400 °C and 15 bar in a semi batch stirred autoclave reactor. Pd/zeolite-1 and Pd/zeolite-2 catalysts were prepared using microwave polyol method with different treatment conditions. The liquid hydrocarbon products named Renewable Diesel have suitable density and viscosity, and quite high cetane index in accordance with standard commercial diesel and ASTM D-975. The IR spectrum of Renewable Diesel products have similarities with commercial diesel. The oxygenation removal pathway of oleic acid over Pd/zeolite 1 catalyst was primarily compiled through decarboxylation at 375 °C.  相似文献   

13.
Novel titanium-supported nanoporous network bimetallic Pt–Ir/Ti electrocatalysts (S1:Pt59Ir41/Ti, S2:Pt44Ir56/Ti, S3:Pt22Ir78/Ti) have been successfully fabricated by the hydrothermal process. The nanoparticles of Pt and Ir were deposited on the titanium substrates in the presence of formaldehyde as a reduction agent. The electrocatalytic activity of these electrocatalysts towards formic acid oxidation in 0.5 M H2SO4 + 0.5 M HCOOH solutions was investigated using cyclic voltammograms (CVs), linear sweep voltammograms (LSVs), chrono amperometry and electrochemical impedance spectroscopy (EIS). The CVs of S1, S2 and S3 exhibit two anodic peaks in the forward scan and one anodic peak in the reverse scan which are similar to the pure Pt. Their LSVs show that the three samples present significantly high current densities of formic acid oxidation compared to the Pt electrode. It is observed from the chrono amperometric measurements at potential 600 mV that the sample S2 delivers a steady-state current density that is 545 times larger than that for the pure Pt electrode. EIS analysis shows that the impedances on both the imaginary and real axes of S1, S2 and S3 are much lower than those of the pure Pt. Among the three samples (S1, S2 and S3), S2 exhibits the highest electrocatalytic activity towards the formic acid oxidation.  相似文献   

14.
Using dibenzo-24-crown-8-ether (DB24C8) as phase transfer catalyst, the monodispersed iron–platinum (FePt) alloy nanoparticles with size of ∼17 nm were synthesized by reduction of H2PtCl6·6H2O and FeCl2·4H2O in the solvothermal system. The structure, magnetic property and electrocatalytic activity of FePt nanoparticles were characterized by transmission electron microscopy (TEM), X-ray diffraction system (XRD), vibration sample magnetometer (VSM) and CHI 820 electrochemical analyser (three electrodes system, the reference electrode is saturated calomel electrode (SCE), the counter electrode is platinum electrode and the glassy carbon electrode is used as working electrode (GCE)), respectively. The results show that the as-synthesized FePt nanoparticles have a chemically disordered fcc structure and can be transformed into chemically ordered fct structure after annealing treatment above 400 °C, simultaneously accompanying with the coercivity changed from 5 to 2400 Oe. CVs of 0.5 M H2SO4/0.5 M CH3OH on GCE modified with FePt nanoparticles monolayer illustrate that the as-synthesized FePt nanoparticles have strong electrocatalytic activity toward the oxidation of CH3OH in aqueous solution.  相似文献   

15.
An interesting mode of reactivity of MnO2 nanoparticles modified electrode in the presence of H2O2 is reported. The MnO2 nanoparticles modified electrodes show a bi-direction electrocatalytic ability toward the reduction/oxidation of H2O2. Based on this property, a choline biosensor was fabricated via a direct and facile electrochemical deposition of a biocomposite that was made of chitosan hydrogel, choline oxidase (ChOx) and MnO2 nanoparticles onto a glassy carbon (GC) electrode. The biocomposite is homogeneous and easily prepared and provides a shelter for the enzyme to retain its bioactivity. The results of square wave voltammetry showed that the electrocatalytic reduction currents increased linearly with the increase of choline chloride concentration in the range of 1.0 × 10−5 –2.1 × 10−3 M and no obvious interference from ascorbic acid and uric acid was observed. Good reproducibility and stability were obtained. A possible reaction mechanism was proposed.  相似文献   

16.
In this work, palladium (Pd) nanoparticles/three-dimensional hollow N-doped graphene frameworks (HNGF) hybrid catalysts were fabricated by using amine-functionalized poly (glycidyl methacrylate) microspheres-templated HNGF as supporting materials for Pd nanoparticles (NPs). The results demonstrate that the Pd NPs with average sizes of ~ 5.5 nm can be well dispersed on the surfaces of HNGF with internal circular holes of ~ 400 nm. The Pd/HNGF catalysts exhibit high electrocatalytic activity and durability toward methanol electro-oxidation in alkaline medium, compared to Pd/graphene and Pd/carbon.  相似文献   

17.
通过液相还原法制备了具有不同原子比例的Pd-Ni/C催化剂,并且使用X射线衍射(XRD)、透射电子显微镜(TEM)和X射线光电子能谱(XPS) 等表征手段对制备的催化剂进行了表征,总结了Ni的掺杂对Pd-Ni合金纳米粒子的尺寸及晶体结构的影响。电化学测试结果表明:适量的Ni的掺杂不但能够增强催化剂对甲酸催化氧化的活性,而且还能够提高催化剂的稳定性。因此,Pd-Ni/C催化剂是一类具有潜在应用前景的直接甲酸燃料电池阳极催化剂  相似文献   

18.
The electrochemical reduction of CO2 is strongly influenced by both the applied potential and the surface adsorption status of the catalyst. In this work a gas diffusion electrode (GDE) coated with Pd nanoparticles/carbon black (Pd/XC72) was used to study the electrochemical reduction of CO2. Cyclic voltammetric (CV) analysis of Pd/XC72 between 1.5 V and − 0.6 V (vs. RHE) shows the formation of intermediates and the blocking of hydrogen absorption on the Pd nanoparticles (NPs) under a CO2 atmosphere. The relationships between the Faradaic efficiency/current density and the applied potential reveal that the onset potential of CO formation is around − 0.4 V. Moreover, the presence of adsorbed CO was confirmed through CV analysis of Pd/XC72 under CO2 and CO/He atmospheres. This demonstrates that H atoms and CO intermediates co-adsorb on the surface of the Pd NPs at an applied potential of around − 0.4 V. When the applied potential is more negative than − 0.6 V, adsorption of CO intermediates on the surface of the Pd NPs becomes dominant.  相似文献   

19.
We characterized the electrocatalytic activity of platinum electrode modified by underpotential deposited lead (PtPbupd) for a formic acid (HCOOH) oxidation and investigated the influence on the power performance of direct formic acid fuel cells (DFAFC). Based on the electrochemical analysis using cyclic voltammetry and chronoamperometry, PtPbupd electrode modified by underpotential deposition (UPD) exhibited significantly enhanced catalytic activity for HCOOH oxidation below anodic overpotential of 0.4 V (vs. SCE). Multi-layered PtPbupd electrode structure of Pt/Pbupd/Pt resulted in more stable and enhanced performance using 50% reduced loading of anode catalyst. The performance of multi-layered PtPbupd anode is about 120 mW/cm2 at 0.4 V and it also showed a sustainable cell activity of 0.52 V at an application of constant current loading of 110 mA/cm2.  相似文献   

20.
The stability and degradation mechanism of graphitized (Graphene nanosheets) and more amorphous (Vulcan XC-72R) carbon-supported palladium nanoparticles was investigated. Coupling identical-location transmission electron microscopy (ILTEM) and electrochemistry enabled to correlate the distribution of the Pd nanoparticles under accelerated stress test (up to 1000 cycles between 0.1 and 1.23 V vs. RHE, in a 0.1 M NaOH solution at 25 °C) with changes in electrochemical accessible surface area (ECSA). The carbon-supported Pd nanoparticles undergo similar rates of degradation in terms of electrochemical surface areas on both supports. However, their mechanisms of degradation differ: on amorphous carbon, the primary mode of degradation is Pd nanoparticles detachment (and minor agglomeration), whereas on graphitized supports it is more likely their coalescence and dissolution/redeposition. “Bulk” carbon-corrosion is negligible in both cases, as proven by ex situ Raman spectroscopy. So, using a graphitized carbon support (Graphene nanosheets) versus a more amorphous one (Vulcan XC-72R) does not enable to significantly depreciate the Pd/C catalyst degradation in alkaline media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号