首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The synthesis of the new m ‐terphenyl‐substituted cyclopentadienyl ligand precursor 1‐cyclopentadiene‐2,6‐bis(2,4,6‐trimethylphenyl)benzene (TerMesCpH) is described. The synthesis proceeds through the reaction of TerMesLi with cobaltocenium iodide, followed by oxidation of the intermediate cobalt(I) species to give the corresponding cyclopentadiene as a mixture of isomers. The preparation and spectroscopic properties of the alkali‐metal salts (Li–Cs) is described, as well as structural information obtained by X‐ray diffraction studies for the lithium, potassium, and cesium analogues. Crystallographic data demonstrate the ability of these new ligands to act as monoanionic chelates by forming metal complexes with Cp–M–Ar bonding environments.  相似文献   

3.
Z‐scheme water splitting is a promising approach based on high‐performance photocatalysis by harvesting broadband solar energy. Its efficiency depends on the well‐defined interfaces between two semiconductors for the charge kinetics and their exposed surfaces for chemical reactions. Herein, we report a facile cation‐exchange approach to obtain compounds with both properties without the need for noble metals by forming Janus‐like structures consisting of γ‐MnS and Cu7S4 with high‐quality interfaces. The Janus‐like γ‐MnS/Cu7S4 structures displayed dramatically enhanced photocatalytic hydrogen production rates of up to 718 μmol g−1 h−1 under full‐spectrum irradiation. Upon further integration with an MnOx oxygen‐evolution cocatalyst, overall water splitting was accomplished with the Janus structures. This work provides insight into the surface and interface design of hybrid photocatalysts, and offers a noble‐metal‐free approach to broadband photocatalytic hydrogen production.  相似文献   

4.
5.
6.
Phosphine‐initiated cation exchange is a well‐known inorganic chemistry reaction. In this work, different phosphines have been used to modulate the thermodynamic and kinetic parameters of the cation exchange reaction to synthesize complex semiconductor nanostructures. Besides preserving the original shape and size, phosphine‐initiated cation exchange reactions show potential to precisely tune the crystallinity and composition of metal/semiconductor core–shell and doped nanocrystals. Furthermore, systematic studies on different phosphines and on the elementary reaction mechanisms have been performed.  相似文献   

7.
8.
9.
Herein the sodium alkylmagnesium amide [Na4Mg2(TMP)6(nBu)2] (TMP=2,2,6,6‐tetramethylpiperidide), a template base as its deprotonating action is dictated primarily by its 12 atom ring structure, is studied with the common N‐heterocyclic carbene (NHC) IPr [1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene]. Remarkably, magnesiation of IPr occurs at the para‐position of an aryl substituent, sodiation occurs at the abnormal C4 position, and a dative bond occurs between normal C2 and sodium, all within a 20 atom ring structure accommodating two IPr2−. Studies with different K/Mg and Na/Mg bimetallic bases led to two other magnesiated NHC structures containing two or three IPr monoanions bound to Mg through abnormal C4 sites. Synergistic in that magnesiation can only work through alkali‐metal mediation, these reactions add magnesium to the small cartel of metals capable of directly metalating a NHC.  相似文献   

10.
By exploring co‐complexation reactions between the manganese alkyl Mn(CH2SiMe3)2 and the heavier alkali‐metal alkyls M(CH2SiMe3) (M=Na, K) in a benzene/hexane solvent mixture and in some cases adding Lewis donors (bidentate TMEDA, 1,4‐dioxane, and 1,4‐diazabicyclo[2,2,2] octane (DABCO)) has produced a new family of alkali‐metal tris(alkyl) manganates. The influences that the alkali metal and the donor solvent impose on the structures and magnetic properties of these ates have been assessed by a combination of X‐ray, SQUID magnetization measurements, and EPR spectroscopy. These studies uncover a diverse structural chemistry ranging from discrete monomers [(TMEDA)2MMn(CH2SiMe3)3] (M=Na, 3 ; M=K, 4 ) to dimers [{KMn(CH2SiMe3)3?C6H6}2] ( 2 ) and [{NaMn(CH2SiMe3)3}2(dioxane)7] ( 5 ); and to more complex supramolecular networks [{NaMn(CH2SiMe3)3}] ( 1 ) and [{Na2Mn2(CH2SiMe3)6(DABCO)2}] ( 7 )). Interestingly, the identity of the alkali metal exerts a significant effect in the reactions of 1 and 2 with 1,4‐dioxane, as 1 produces coordination adduct 5 , while 2 forms heteroleptic [{(dioxane)6K2Mn2(CH2SiMe3)4(O(CH2)2OCH=CH2)2}] ( 6 ) containing two alkoxide–vinyl anions resulting from α‐metalation and ring opening of dioxane. Compounds 6 and 7 , containing two spin carriers, exhibit antiferromagnetic coupling of their S=5/2 moments with varying intensity depending on the nature of the exchange pathways.  相似文献   

11.
12.
13.
14.
15.
《化学:亚洲杂志》2017,12(12):1381-1390
In this study, we synthesized [2]rotaxanes possessing three recognition sites—a dialkylammonium, an alkylarylamine, and a tetra(ethylene glycol) stations—in their dumbbell‐like axle component and dibenzo[24]crown‐8 (DB24C8) as their macrocyclic component. These [2]rotaxanes behaved as four‐state molecular shuttles: i) under acidic conditions, the DB24C8 unit encircled both the dialkylammonium and alkylarylammonium stations; ii) under neutral conditions, the dialkylammonium unit was the predominant station for the DB24C8 component; iii) under basic conditions, when both ammonium centers were deprotonated, the alkylarylamine unit became a suitable station for the DB24C8 component; and iv) under basic conditions in the presence of an alkali‐metal cation, the tetra(ethylene glycol) unit recognized the DB24C8 component through cooperative binding of the alkali‐metal ion. In addition, we observed that the [2]rotaxanes exhibited selective recognition for metal cations. These shuttling motions of the macrocyclic component proceeded reversibly.  相似文献   

16.
17.
The polystyrene‐supported α‐selenoacetic acid and α‐selenopropionic acid were prepared and used for the synthesis of 2‐alkenamides from primary and secondary amines in good yields and high purities.  相似文献   

18.
Deposition of metals on TiO2 semiconductor particles (M‐TiO2) results in hybrid Janus objects combining the properties of both materials. One of the techniques proposed to generate Janus particles is bipolar electrochemistry (BPE). The concept can be applied in a straightforward way for the site‐selective modification of conducting particles, but is much less obvious to use for semiconductors. Herein we report the bulk synthesis of anisotropic M‐TiO2 particles based on the synergy of BPE and photochemistry, allowing the intrinsic limitations, when they are used separately, to be overcome. When applying electric fields during irradiation, electrons and holes can be efficiently separated, thus breaking the symmetry of particles by modifying them selectively and in a wireless way on one side with either gold or platinum. Such hybrid materials are an important first step towards high‐performance designer catalyst particles, for example for photosplitting of water.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号