首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dimethyl Earth‐Metal Heterocycles – Derivatives of Trimethyl‐silylated, ‐germylated, and ‐stannylated Phosphanes and Arsanes – Syntheses, Spectra, and Structures The organo earth‐metal heterocycles [Me2MIII–E(MIVMe3)2]n with MIII = Al, Ga, In; E = P, As; MIV = Si, Ge, Sn and n = 2, 3 (Me = CH3) have been prepared from the dimethyl metal compounds Me2MIIIX (X = Me, H, Cl, OMe, OPh) and the pnicogen derivatives HnE(MIVMe3)3–n (n = 0, 1) according to known preparation methods. The mass, 1H, 13C, 31P, 29Si, 119Sn nmr, as well as the ir and Raman spectra have been discussed comparatively; selected representatives are characterized by X‐ray structure analyses. The dimeric species with four‐membered (E–MIII)2 rings are isotypic and crystallize in the triclinic space group P1, the trimer [Me2In–P(SnMe3)2]3 with a strongly puckered (In–P)3‐ring skeleton crystallizes with two formula units per cell in the same centrosymmetric triclinic space group.  相似文献   

3.
β-SrNH and β-SrND – Synthesis and Crystal Structure Determination by X-Ray and Neutron Powder Diffraction By reaction of strontium with NH3 in a flow tube at 750 °C a novel modification of strontium imide, β-SrNH, was obtained as a dark yellow powder. According to X-ray powder diffractometry und crystal structure determination by direct methods β-SrNH and β-SrND adopt a highly distorted variant of the NaCl type of structure (Pnma, a = 757.70(1), b = 392.260(4), c = 569.652(9) pm, Z = 4, wRp = 0.098, Rp = 0.075, RF = 0.044). Temperature dependent neutron powder diffraction of β-SrND revealed the position of the D atoms which in contrast to α-SrND are crystallographically ordered. At higher temperatures β-SrNH transforms to α-SrNH.  相似文献   

4.
Synthesis and Characterization of 2‐O‐Functionalized Ethylrhodoximes and ‐cobaloximes 2‐Hydroxyethylrhodoxime and ‐cobaloxime complexes L—[M]—CH2CH2OH (M = Rh, L = PPh3, 1 ; M = Co, L = py, 2 ; abbr.: L—[M] = [M(dmgH)2L] (dmgH2 = dimethylglyoxime, L = axial base) were obtained by reaction of L—[M] (prepared by reduction of L—[M]—Cl with NaBH4 in methanolic KOH) with BrCH2CH2OH. H2O—[Rh], prepared by reduction of H[RhCl2(dmgH)2] with NaBH4 in methanolic KOH, reacted with BrCH2CH2OH followed by addition of pyridine yielding py—[Rh]—CH2CH2OH ( 3 ). Complexes 1 and 3 were found to react with (Me3Si)2NH forming 2‐(trimethylsilyloxy)ethylrhodoximes L—[Rh]—CH2CH2OSiMe3 (L = PPh3, 4 ; L = py, 5 ). Treatment of complex 1 with acetic anhydride resulted in formation of the 2‐(acet oxy)ethyl complex Ph3P—[Rh]—CH2CH2OAc ( 6 ). All complexes 1 — 6 were isolated in good yields (55—71 %). Their identities were confirmed by NMR spectroscopic investigations ( 1 — 6 : 1H, 13C; 1 , 4 , 6 : 31P) and for [Rh(CH2CH2OH)(dmgH)2(PPh3)]·CHCl3·1/2H2O ( 1 ·CHCl3·1/2H2O) and py—[Rh]—CH2CH2OSiMe3 ( 5 ) by X‐ray diffraction analyses, too. In both molecules the rhodium atoms are distorted octahedrally coordinated with triphenylphosphine and the organo ligands (CH2CH2OH and CH2CH2OSiMe3, respectively) in mutual trans position. Solutions of 1 in dmf decomposed within several weeks yielding a hydroxyrhodoxime complex “Ph3P—[Rh]—OH”. X‐ray diffraction analysis exhibited that crystals of this complex have the composition [{Rh(dmg)(dmgH) (H2O)(PPh3)}2]·4dmf ( 7 ) consisting of centrosymmetrical dimers. The rhodium atom is distorted octahedrally coordinated. Axial ligands are PPh3 and H2O. One of the two dimethylglyoximato ligands is doubly deprotonated. Thus, only one intramolecular O—H···O hydrogen bridge (O···O 2.447(9)Å) is formed in the equatorial plane. The other two oxygen atoms of dmgH and dmg2—, respectively, act as hydrogen acceptors each forming a strong (intermolecular) O···H′—O′ hydrogen bridge to the H′2O′ ligand of the other molecule (O···O′ 2.58(2)/2.57(2)Å).  相似文献   

5.
6.
  相似文献   

7.
8.
9.
Poly- and Spirocyclic Silylhydrazones — Synthesis and Molecular Structures Bulky aminotrifluorosilanes react with lithiated dimethylketone-hydrazone to give 1,2-diaza-3-sila-5-cyclopentenes — DSCP — ( 1, 2 ). The 4-silylated ( 3–5, 8–15 ) and siloxysilyl-substituted ( 17, 18 ) rings eliminate no halosilane or siloxane thermally. Lithiated 2 dimerises with LiF elimination to give the (2+2)cycloadduct of a 1,2-diaza-3-sila-3,5-cyclopentadiene ( 6 ). Lithiated DSCP reacts with MeSiF2N(CMe3)SiMe2CMe3 via a nucleophilic 1,3-methanide ion migration to form LiF and the spirocyclic compound 18 . A compound with spirocyclic silicon ( 21 ) is formed in the reaction of bis(1,2-diaza-3-sila-5-cyclopenten-4-yl)difluorosilane ( 19 ) and the lithium salt of dimethyl-ketone-tert-butylhydrazone. The crystal structures of 6 and 21 are reported.  相似文献   

10.
Synthesis and Crystal Structures of 1,1,3,3‐Tetramethylimidazolinium Dichloride and 1,1,4‐Trimethylpiperazinium Chloride Single crystals of 1,1,3,3‐tetramethylimidazolinium dichloride ( 1 ) and 1,1,4‐trimethylpiperazinium chloride ( 2 ) were obtained by reaction of CH2Cl2 with tetramethylethylenediamine (TMEDA) and NNN′N″N″‐pentamethyldiethylenetriamine (PMDETA), respectively. Both compounds are characterized by single crystal X‐ray diffraction and by IR spectroscopy. 1: [C7H18N2]Cl2, space group P21/c, Z = 4, lattice dimensions at 193(2) K: a = 821.97(11), b = 1130.38(8), c = 1143.08(13) pm, β = 100.348(15)°, R1 = 0.0271. The C7N2 heterocyclic ring has envelope conformation like other salts with this dication. 2: [C7H17N2]Cl, space group P212121, Z = 4, lattice dimensions at 100(2) K: a = 1030.37(8), b = 1036.55(6), c = 831.39(4) pm, R1 = 0.0180. Although the heterocyclic mono‐cation is without site symmetry in the crystal, its molecular symmetry is close to Cs, forming chair conformation of the C4N2 six‐membered ring.  相似文献   

11.
Homo- and Heteroleptic Zinc Arsanides — Syntheses and Structure Bis(trimethylsilyl)arsane reacts with dialkylzinc ZnR2 (R = Me, Et, CH2SiMe3) in the stoichiometric ratio of 1 : 1 in hydrocarbons to the heteroleptic alkyl zink bis(trimethylsilyl)arsanides. The steric demand of the alkyl substituent enforces the oligomerisation degree of two or three. Diethylzinc and two equivalents of HAs(SiMe3)2 yield dimeric zinc bis[bis(trimethylsilyl)arsanide]. Methyl zinc bis(trimethylsilyl)arsanide crystallizes as a trimer with a six-membered Zn3As3-cycle in the twist-boat conformation {orthorhombic, P212121, a = 1 015.3(1), b = 1 887.6(4), c = 2 272.9(4) pm, Z = 4}. The molecule of ethyl zinc bis(trimethylsilyl)arsanide is built similar in the solid state {monoclinic, P21/n, a = 1 220.2(4), b = 1 889.0(6), c = 1 968.5(6) pm, β = 90.24(1)°, Z = 4}. However, zinc bis[bis(trimethylsilyl)arsanide] separates due to the steric demand of the terminal (Me3Si)2As-ligand as a dimer in the triclinic space group P1 {a = 967.8(2), b = 1 088.5(2), c = 1 238.1(2) pm, α = 92.41(1), β = 105.20(1), γ = 105.05(1)°, Z = 2}. The endocyclic zinc-arsenic distances vary only slightly around 248 pm, but the exocyclic one is with a value of 238 pm drastically shorter. The Zn? C bond lengths with values around 197 pm lie in the characteristic region for zinc with the coordination number of three.  相似文献   

12.
γ-Lactone-cis-annulation to Δ2- and Δ3- Cholestene. From Δ2- and Δ3- cholestene the γ-lactones 11a , 11b , 12a , and 12b are synthesized through the dibromocarbene adducts 3 and 4 , the bromohydrines 5 and 6 , the oxapiropentanes 7 and 8 , and the cyclobutanones 9a , 9b and 10a , 10b , respectively. The 13C-NMR.-spectra of 1–8 and 11 as well as the ORD.-spectra of the cyclobutanones 9 and 10 are reported.  相似文献   

13.
14.
Aminocarbonylthioformates — Preparation and Reactivity Sodium aminocarbonylthioformate NaSCOCONH2 (II) is obtained by reaction of sodium cyanodithioformate with acetone in presence of a secondary amine and water. II permits to produce the acid HSCOCONH2 · H2O (IX) and salts MII(SCOCONH2)2 · 2H2O. In basic aqueous solutions hydrolysis of II to oxaminate and oxalate, respectively, takes place, an excess of aqueous ammonia leads to amidino formic acid. In organic solvents the reaction of IX with N-bases yields stable ammonium salts. The results of i.r. spectroscopic and thermogravimetric measurements are discussed.  相似文献   

15.
16.
17.
Cyanohydrazonothioformate — Preparation and Reactions Sodiumcyanohydrazonothioformate-monohydrate NaSC(CN)NNH2 · H2O is obtained by reaction of sodiumcyanodithioformate with hydrazine. The new compound forms S-organosubstituted derivatives. Reaction with bivalent metal cations lead to coordination compounds MII(SC(CN)NNH2)2 · 2H2O, which subjected the facile reaction with carbonyl compounds yield alkylidenehydrazonocyanothioformates MII(SC(CN)NNCRR1)2. The results of i.r. spectroscopic and thermogravimetric measurements are reported.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号