首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Castor oil and ricinoleic acid (an isolate of castor oil) are environmentally friendly bio-based organic surfactants that have been used as capping agents to prepare nearly spherical cadmium sulfide quantum dots (QDs) at 230, 250 and 280 °C. The prepared quantum dots were characterized by Ultra violet–visible (UV–vis), Photoluminescence (PL), Transmission Electron Microscopy (TEM), High Resolution Transmission Electron Microscopy (HRTEM) and X-ray diffraction (XRD) giving an overall CdS QDs average size of 5.14±0.39 nm. The broad XRD pattern and crystal lattice fringes in the HRTEM images showed a hexagonal phase composition of the CdS QDs. The calculated/estimated average size of the prepared castor oil capped CdS QDs for various techniques were 4.64 nm (TEM), 4.65 nm (EMA), 5.35 nm (UV–vis) and 6.46 nm (XRD). For ricinoleic acid capped CdS QDs, the average sizes were 5.56 nm (TEM), 4.78 nm (EMA), 5.52 nm (UV–vis) and 8.21 nm (XRD). Optical properties of CdS QDs showed a change of band gap energy from its bulk band gap of 2.42–2.82 eV due to quantum size confinement effect for temperature range of 230–280 °C. Similarly, a blue shift was observed in the photoluminescence spectra. Scanning electron microscope (SEM) observations show that the as-synthesized CdS QDs structures are spherical in shape. Fourier transform infra-red (FTIR) studies confirms the formation of castor oil and ricinoleic acid capped CdS QDs.  相似文献   

2.
We report the synthesis of nanostructure ZnO semiconductor with ~2.1 nm diameter using a chemical precipitation method. The resulting nanoparticles were characterized by X-ray diffraction analysis (XRD), Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The optical properties were investigated by UV–vis and fluorescence techniques. The absorption spectra exhibit a sharp absorption edge at ~334 nm corresponding to band gap of ~3.7 eV. The fluorescence spectra displayed a near-band-edge ultraviolet excitonic emission at ~410 nm and a green emission peak at ~525 nm, due to a transition of a photo-generated electron from the conduction band to a deeply trapped hole. The photocatalytic activity of the prepared ZnO nanoparticles has been investigated for the degradation of ciprofloxacin drug under UV light irradiation in aqueous solutions of different pH values. The results showed that the photocatalytic degradation process is effective at pH 7 and 10, but it is rather slow at pH 4. Higher degradation efficiency (~50%) of the drug was observed at pH 10 after 60 min. Photodegradation of the drug follows a pseudo-first-order kinetics.  相似文献   

3.
《Ultrasonics sonochemistry》2014,21(6):1958-1963
A simple sonochemical route was developed for the preparation of gold nanoparticles/boron nitride sheets (AuNPs/BNS) nanocomposites without using reducing or stabilizing agents. Transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and UV–vis absorption spectra were used to characterize the structure and morphology of the nanocomposites. The experimental results showed that AuNPs with approximately 20 nm were uniformly attached onto the BNS surface. It was found that the AuNPs/BNS nanocomposites exhibited good catalytic activity for the reduction of H2O2. The modified electrochemical sensor showed a linear range from 0.04 to 50 mM with a detection limit of 8.3 μM at a signal-to-noise ratio of 3. The findings provide a low-cost approach to the production of stable aqueous dispersions of nanoparticles/BNS nanocomposites.  相似文献   

4.
Nanocrystalline tin oxide (SnO2) powders were synthesized through wet chemical route using tin metal as precursor. The morphology and optical properties, as well as the effect of sintering on the structural attributes of SnO2 particles were analyzed using Transmission electron microscopy (TEM), UV–visible spectrophotometry (UV–vis) and X-ray diffraction (XRD), respectively. The data revealed that the lattice strain plays a significant role in determining the structural properties of sintered nanoparticles. The particle size was found to be 5.8 nm, 19.1 nm and 21.7 nm for samples sintered at 300 °C, 500 °C, and 700 °C, respectively. Also, the band gaps were substantially reduced from 4.1 eV to 3.8 eV with increasing sintering temperatures. The results elucidated that the structural and optical properties of the SnO2 nanoparticles can be easily modulated by altering sintering temperature during de novo synthesis.  相似文献   

5.
The synergy of ultrasonication and the exposure to light radiation was found to be necessary in the formation of nanocomposites of silver and a protease alpha chymotrypsin. The reaction was carried out in aqueous medium and the process took just less than 35 min. Ultrasonication alone formed very negligible number of nanoparticles of <100 nm size whereas light alone produced enough number but the size of the particles was >100 nm.The effects of pH (in the range of 3–5, 9–10), ultrasonication time periods (0–30 min), ultrasonication intensity (33–83 W cm?2), energy of light radiation (short UV, long UV and Fluorescent light) and time period of exposure (5–60 min) to different light radiations were studied.The formation of nanocomposites under these effects was followed by surface plasmon resonance (SPR) spectra, dynamic light scattering (DLS), transmission electron microscopy (TEM). Ag–chymotrypsin nanocomposites of sizes ranging from 13 to 72 nm were formed using the synergy of ultrasonication and exposure to short UV radiation. Results show that ultrasonication promoted nuclei formation, growth and reduction of polydispersity by Ostwald ripening.  相似文献   

6.
A novel method has been developed for the preparation of nano-sized TiO2 with anatase phase. Nanoparticles with diameter about 6 nm were prepared at a relatively low temperature (75 °C) and short time. The synthesis was carried out by the hydrolysis of titanium tetra-isopropoxide (TTIP) in the presence of water, ethanol, and dispersant under ultrasonic irradiation (500 kHz) at low intensity. The results show that variables such as water/ethanol ratio, irradiation time, and temperature have a great influence on the particle size and crystalline phases of TiO2 nanoparticles. Characterization of the product was carried out by different techniques such as powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and UV–vis spectroscopy.  相似文献   

7.
Stable gold nanoparticles have been prepared by using soluble starch as both the reducing and stabilizing agents; this reaction was carried out at 40 °C for 5 h. The obtained gold nanoparticles were characterized by UV–Vis absorption spectroscopy, transmission electron microscopy (TEM) and z-scan technique. The size of these nanoparticles was found to be in the range of 12–22 nm as analyzed using transmission electron micrographs. The optical properties of gold nanoparticles have been measured showing the surface plasmon resonance. The second-order nonlinear optical (NLO) properties were investigated by using a continuous-wave (CW) He–Ne laser beam with a wavelength of 632.8 nm at three different incident intensities by means of single beam techniques. The nonlinear refractive indices of gold nanoparticles were obtained from close aperture z-scan in order of 10?7 cm2/W. Then, they were compared with diffraction patterns observed in far-field. The nonlinear absorption of these nanoparticles was obtained from open aperture z-scan technique. The values of nonlinear absorption coefficient are obtained in order of 10?1 cm/W.  相似文献   

8.
Silver (Ag) nanorods with the average length of 280 nm and diameters of around 25 nm were synthesized by a simple reduction process of silver nitrate in the presence of polyvinyl alcohol (PVA) and investigated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission-electron microscopy (TEM) and UV–vis spectrum. It was found out that both temperature and reaction time are the important factors in determining the morphology and aspect ratios of nanorods. TEM images showed the prepared Ag nanorods have a face centered shape (fcc) with fivefold symmetry consisting of multiply twinned face centered cubes as revealed in the cross-section observations. The fivefold axis, i.e. the growth direction, normally goes along the (1 1 1) zone axis direction of the basic fcc Ag-structure. Preferred crystallographic orientation along the (1 1 1), (2 0 0) or (2 2 0) crystallographic planes and the crystallite size of the Ag nanorods are briefly analyzed.  相似文献   

9.
NdVO4 nanoparticles are successfully synthesized by efficient sonochemical method using two different structural directing agents like CTAB and P123. The phase formation and functional group analysis are carried out using X-ray diffraction (XRD) and fourier transform infra red (FT-IR) spectra, respectively. Using Scherrer equation the calculated grain sizes are 27 nm, 24 nm and 20 nm corresponding to NdVO4 synthesized by without surfactant, with CTAB and P123, respectively. The TEM images revealed that the shape of NdVO4 particles is rice-like and rod shaped particles while using CTAB and P123 as surfactants. The growth mechanism of NdVO4 nanoparticles is elucidated with the aid of TEM analysis. From electrical analysis, the conductivity of NdVO4 nanoparticles synthesized without surfactant showed a higher conductivity of 5.5703 × 10−6 S cm−1. The conductivity of the material depends on grain size and increased with increase in grain size due to the grain size effect. The magnetic measurements indicated the paramagnetic behavior of NdVO4 nanoparticles.  相似文献   

10.
Single-walled carbon nanotubes (CNTs) were synthesized by a chemical vapor deposition (CVD) method on transmission electron microscopy (TEM) silica coated nickel grids using carbon monoxide as carbon source and iron nanoparticles as catalyst. The produced CNTs were as large as 11 nm in diameter. Investigations on the CNT deformations based on high-resolution TEM images showed that the deformation of CNTs due to their interaction with the substrate occurs at diameters larger than 2.7 nm. Small deformation of free standing tubes was found to occur at diameters above approximately 4.5 nm.  相似文献   

11.
《Current Applied Physics》2010,10(2):614-624
Barium molybdate (BaMoO4) powders were synthesized by the co-precipitation method and processed in microwave-hydrothermal at 140 °C for different times. These powders were characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), Fourier transform infrared (FT-IR), ultraviolet–visible (UV–vis) absorption spectroscopies and photoluminescence (PL) measurements. XRD patterns and FT-Raman spectra showed that these powders present a scheelite-type tetragonal structure without the presence of deleterious phases. FT-IR spectra exhibited a large absorption band situated at around 850.4 cm−1, which is associated to the Mo–O antisymmetric stretching vibrations into the [MoO4] clusters. UV–vis absorption spectra indicated a reduction in the intermediary energy levels within band gap with the processing time evolution. First-principles quantum mechanical calculations based on the density functional theory were employed in order to understand the electronic structure (band structure and density of states) of this material. The powders when excited with different wavelengths (350 nm and 488 nm) presented variations. This phenomenon was explained through a model based in the presence of intermediary energy levels (deep and shallow holes) within the band gap.  相似文献   

12.
To obtain enhanced room temperature ferromagnetism (RTFM) along with the increase in optical bandgap in the compound semiconductors has been an interesting topic. Here, we report RTFM along with increase in energy bandgap in chemically synthesized Zn1−xCuxS (0 ≤ x ≤ 0.04) DMS nanoparticles. Structural properties of the synthesized samples studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show the formation of cubic phase Cu doped ZnS nanoparticles of ~3–5 nm size. An intrinsic weak ferromagnetic behavior was observed in pure ZnS sample (at 300 K) which got increased in Cu doped samples and was understood due to defect induced ferromagnetism. UV–vis measurement showed increase in the energy bandgap with the increase in Cu doping. The PL study suggested the presence of sulfur and zinc vacancies and surface defects which were understood contributing to the intrinsic FM behavior.  相似文献   

13.
The graphene oxide(GO) sheets decorated by Ag nanoparticles were prepared using a liquid–liquid two-phase method at the room temperature. The synthesized samples existed in the organic phase and were characterized by X-ray diffraction, transmission electron microscopy, UV–vis spectroscopy and Raman spectra. The results demonstrate that these silver-nanoparticles with diameter of about 10 nm assembled on graphene oxide sheets are flexible and can form stable suspensions in organic phase. Raman signals of graphene oxide sheets are increased by the attached silver nanoparticles, displaying higher surface-enhanced Raman scattering activity. Furthermore, Ag/GO are found to serve as effective catalysts to activate the reduction of 4-nitrophenol (4NP) in the presence of NaBH4.  相似文献   

14.
An idea of using pure iron and graphite electrodes was employed for synthesizing carbon nanoparticles by arc discharge in liquid nitrogen. The synthesized products consist of multiwalled carbon nanotubes (MW–CNT), carbon nanohorns (CNH), and carbon nanocapsules (CNC) with core–shell structure. Effect of metallic cathode and discharge current on product structure and yield had been experimentally investigated. Typical evidence of transmission electron microscopic images revealed that under some certain conditions of discharge in liquid nitrogen the synthesized products mainly consisted of CNCs with mean diameter of 50–400 nm. When conventional graphitic electrodes were employed, CNHs with some MW–CNTs were mainly synthesized. Meanwhile, MW–CNTs with diameter of 8–25 nm and length 150–250 nm became less selectively synthesized as cathode deposit under the condition of discharge in liquid nitrogen with higher arc current. The production yield of carbon nanoparticles synthesized by either carbon–carbon or carbon–iron electrodes became also lower with an increase in the arc current.  相似文献   

15.
ZnS nanoparticles with Mn2+ doping (1–2.5%) have been prepared through a simple soft chemical route, namely the chemical precipitation method. The nanostructures of the prepared undoped ZnS and Mn2+-doped ZnS:Mn nanoparticles have been analyzed using X-ray diffraction (XRD), Scanning electron microscope (SEM), transmission electron microscope (TEM) and UV–vis spectrophotometer. The size of the particles is found to be in 2–3 nm range. Room-temperature photoluminescence (PL) spectrum of the undoped sample only exhibits a blue-light emission peaked at ∼365 nm under UV excitation. However, from the Mn2+-doped samples, a yellow-orange emission from the Mn2+ 4T16A1 transition is observed along with the blue emission. The prepared 2.5% Mn2+-doped sample shows efficient emission of yellow-orange light with the peak emission at ∼580 nm with the blue emission suppressed.  相似文献   

16.
《Ultrasonics sonochemistry》2014,21(4):1570-1577
A rapid in situ biosynthesis of gold nanoparticles (AuNPs) is proposed in which a geranium (Pelargonium zonale) leaf extract was used as a non-toxic reducing and stabilizing agent in a sonocatalysis process based on high-power ultrasound. The synthesis process took only 3.5 min in aqueous solution under ambient conditions. The stability of the nanoparticles was studied by UV–Vis absorption spectroscopy with reference to the surface plasmon resonance (SPR) band. AuNPs have an average lifetime of about 8 weeks at 4 °C in the absence of light. The morphology and crystalline phase of the gold nanoparticles were characterized by transmission electron microscopy (TEM). The composition of the nanoparticles was evaluated by electron diffraction and X-ray energy dispersive spectroscopy (EDS). A total of 80% of the gold nanoparticles obtained in this way have a diameter in the range 8–20 nm, with an average size of 12 ± 3 nm. Fourier transform infrared spectroscopy (FTIR) indicated the presence of biomolecules that could be responsible for reducing and capping the biosynthesized gold nanoparticles. A hypothesis concerning the type of organic molecules involved in this process is also given. Experimental design linked to the simplex method was used to optimize the experimental conditions for this green synthesis route. To the best of our knowledge, this is the first time that a high-power ultrasound-based sonocatalytic process and experimental design coupled to a simplex optimization process has been used in the biosynthesis of AuNPs.  相似文献   

17.
A facile strategy has been developed for the preparation of bimetallic gold–silver (Au–Ag) nanocomposite films by alternating absorption of poly-(ethyleneimine)–silver ions and Au onto substrates and subsequent reduction of the silver ions. The composition, micro-structure and properties of the {PEI–Ag/Au}n nanocomposite films were characterized by ultraviolet visible spectroscopy (UV–vis), transmisson electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), surface enhanced Raman scattering (SERS) and cyclic voltammetry (CV). The UV–vis characteristic absorbances of {PEI–Ag/Au}n nanocomposite thin film increase almost linear with the number of bilayers, which indicates a process of uniform assembling. Appearance of a double plasmon bands in the visible region and the lack of apparent core–shell structures in the TEM images confirm the formation of bimetallic Au–Ag nanoparticles. The result of XPS also demonstrates the existence of Ag and Au nanoparticles in the nanocomposite films. TEM and FESEM images show that these Ag and Au nanoparticles in the films possess sphere structure with the size of 20–25 nm. The resulting {PEI–Ag/Au}n films inherit the properties from both the metal Ag and Au, which exhibits a unique performance in SERS and electrocatalytic activities to the oxidation of dopamine. As a result, the {PEI–Ag/Au}n films are more attractive compared to {PEI–Ag/PSS}n and {PEI/Au}n films.  相似文献   

18.
PbS thin films composed of highly (200)-oriented shuttle-like nano-/micro-rods were successfully fabricated on glass substrates by the environment friendly ionothermal method at 140 °C in deep eutectic solvent (DES). The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), ultraviolet-visible (UV–vis) and photoluminescence (PL) spectra, respectively. The possible mechanism of the oriented growth of PbS nano-/micro-rods was discussed. The PbS thin films composed of shuttle-like nano-/micro-rods exhibited a large absorbance property in the wavelength range of 350–1100 nm, and moreover, the PL spectrum had a broad emission band centered at 490 nm. The shuttle-like PbS nano-/micro-rods-based thin films might have potential application in solar cells.  相似文献   

19.
We present a method of incorporation of gold nanoparticles in SDS (sodium dodecyl sulfate) bubbles with a low polydispersity index (monodispersed nanoparticles). Both the bubbles and nanoparticles maintained their structural and morphologic properties after functionalization. The bubbles present a radio of 0.38 mm with a standard deviation of±0.018 mm. The gold nanoparticles were obtained with sucrose as the catalytic agent and ascorbic acid as the reducing agent. The nanoparticles display several geometric morphologies as well as sizes inferior to 50 nm, as observed in the images obtained with Transmission Electron Microscopy (TEM). The optical properties were studied by optical absorption spectroscopy. The absorption band linked to the surface plasmon resonance (SPR) is located at 550 nm before and after the functionalization of the bubbles. Moreover, microscopic bubbles with a diameter smaller than 1 µm with the ability to stabilize nanoparticles in their surface were found in isolated regions of the sample. Additionally, the Surface Enhancement Raman Spectroscopy (SERS) properties of the colloid were analyzed with common drugs.  相似文献   

20.
《Current Applied Physics》2010,10(3):807-812
ZnO nanoparticles doped with Cu were synthesized by solid state reaction using different precursor routes and varying growth environment. Average crystallite size varied from 40 to 100 nm depending upon synthesis temperature, lower temperature favouring smaller particle size. Scanning electron microscope (SEM) images showed that particles synthesized at 250 °C were in the shape of nanorods but those synthesized at 900 °C had spherical shape. Luminescence emission showed marked dependence on the growth conditions varying from ultraviolet (UV) emission to green emission. For making the luminescent nanoparticles bio-compatible, a bioinorganic interface on ZnO:Cu nanoparticles was created by coating them with inert silica. Surface modification of ZnO:Cu was also done with lipophilic polymethylmethacrylate (PMMA). ZnO:Cu nanoparticles showed hexagonal wurtzite structure and the coating of silica was confirmed with the presence of two extra peaks due to silica in the XRD spectra. Thermogravimetric analysis (TGA) and FTIR spectroscopy indicated that PMMA molecules were adsorbed on the surface of ZnO:Cu nanoparticles. SEM images revealed that PMMA adsorption improved the dispersibilty of ZnO:Cu nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号