共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, a photo-catalyst of titanium oxide was coated on zeolite by the sol–gel method. The generation of the zeolite-titanate photo-catalyst was optimized at conditions of calcination temperature (300, 350, 400 and 500 °C), calcination time (1, 2, 3, and 4 h), and titanate content (0, 2, 4, 6, and 8 mL). The catalyst was used for ‘Sonication/UV/H2O2″ activity and finally, eliminating ibuprofen. Physicochemical properties of the as-built photo-catalysts for all optimized conditions were determined using FESEM-EDX-mapping, BET, FTIR, and XRD. The highest percentage of ibuprofen removal (98.9%) was obtained at conditions of zeolite to titanium ratio of 1 g: 2 mL, time in the furnace of 1 h, and temperature of the furnace of 350 °C. The optimum photo-catalytic (namely, Cat-350-1-2) had a surface area value of 39 m2/g and a crystalline size of 4.9 nm. The surface area for all photo-catalysts increased after being used for ibuprofen removal, possibly due to ultrasonic waves. The presence of Ti-O, benzene ring, O-Al-O, O-Si-O, C–H, and O–H in the photo-catalysts structure were confirmed. Growing the calcination time resulted in an increase in the crystallinity of titanium dioxide in the photo-catalysts and, ultimately a reduction in the ibuprofen removal. The consumed energy by the developed system was calculated for the presence (0.094 kJ/g) and absence (17.5 kJ/g) of the ultrasonic wave. The degradation pathway and reaction kinetic are also explored and proposed. The results showed that the ultrasonic-UV-activated H2O2-based technique can be applied as an alternative method for ibuprofen removal from aqueous media. 相似文献
2.
《Ultrasonics sonochemistry》2014,21(2):485-492
Sonochemical activity is dependent on flow patterns within the reactor and either no affect or a decrease in activity was observed at 376, 995, and 1179 kHz from overhead stirring. The interaction of fluid flow with ultrasound was further investigated in this study with circulatory flow. The effect of fluid circulation on radical production was investigated at two circulation speeds, with and without surface stabilisation. The sonochemical activity was determined by the yield of hydrogen peroxide, measured by iodide dosimetry. The sonochemically active region was pictured using sonochemiluminescence imaging and the flow fields were visualised with dyed flow videos. At 376 and 995 kHz, an increase in sonochemical activity was observed with the slower flow rate; however at 1179 kHz, the sonochemical activity was either not affected or decreased. The observed changes in sonochemical activity were attributed to an increase in asymmetry of the bubble collapse brought about by fluid motion. 相似文献
3.
Decomposition of chlorofluorocarbons and hydrofluorocarbons in water by ultrasonic irradiation 总被引:3,自引:0,他引:3
The sonochemical degradation of CFC-113 (F2ClC---CCl2F), HCFC-225ca (F3C---CF2CCl2H), HCFC-225cb (F2ClC---CF2---CClFH) and HFC-134a (F3C---CF2H) in water was investigated. The decomposition rates of CFC-113 increased with increasing the concentration of the CFC and at high concentration the rates far exceeded the rate of OH radical formation by water sonolysis, and OH radicals seemed to have little effect on the decomposition. The pyrolysis in the cavitation bubbles was suggested. 相似文献
4.
为进一步揭示功率超声振动的珩磨机理,以珩磨液为工作介质,研究了功率超声珩磨环境中实际气体的单空泡动力学特性。基于Rayleigh-Plesset方程,应用实际气体绝热方程和范德瓦尔斯方程对其进行了修正,建立了功率超声珩磨环境中实际气体的单空泡动力学方程以及实际气体单空泡共振频率方程。并运用4~5阶RungeKutta法模拟了不同超声条件(声压幅值、空泡初始半径、振动频率)对泡壁的运动以及运动速度的影响。结果表明:较高的声压幅值,空泡理论共振半径R'0与初始半径R0的比值为102数量级以及较低的超声频率有利于超声珩磨磨削区空化效应的发生。 相似文献
5.
In order to clarify the mechanism of nucleation of ice induced by ultrasound, ultrasonic waves have been applied to supercooled pure water and degassed water, respectively. For each experiment, water sample is cooled at a constant cooling rate of 0.15 °C/min and the ultrasonic waves are applied from the water temperature of 0 °C until the water in a sample vessel nucleates. This nucleation temperature is measured. The use of ultrasound increased the nucleation temperature of both degassed water and pure water. However, the undercooling temperature for pure water to nucleate is less than that of degassed water. It is concluded that cavitation and fluctuations of density, energy and temperature induced by ultrasound are factors that affect the nucleation of water. Cavitation is a major factor for sonocrystallisation of ice. 相似文献
6.
《Ultrasonics sonochemistry》2014,21(1):428-435
Ciprofloxacin (CIPRO) and ibuprofen (IBU), a hydrophilic and a hydrophobic compound, respectively, were degraded by ultrasound at the frequencies of 20 and 620 kHz in aqueous solution containing matrix organic compounds. Compared to in its absence, in the presence of terephthalate (TA), a commonly used OH scavenger, CIPRO degradation was inhibited by a factor of 40–1500 depending on the frequency and initial concentration. However, the degradation rates of IBU were only reduced between 30% and 80% with TA present compared to in its absence. Similar to TA, the presence of Suwannee River Fulvic Acid (SRFA) inhibited CIPRO degradation to a greater extent than that of IBU but overall inhibition by SRFA was dramatically less than by TA. Although both TA and SRFA inhibited the degradation of CIPRO and IBU, the mechanisms of inhibition are different. TA reacts with OH in bulk solution and our evidence also indicates that it accumulates on or interacts with cavitation bubbles. On the other hand, SRFA stays in bulk solution, quenching OH and/or associating with the target compounds. 相似文献
7.
Sonocatalytic degradation experiments were carried out to determine the effects of glass beads (GBs) and single-walled carbon nanotubes (SWNTs) on ibuprofen (IBP) and sulfamethoxazole (SMX) removal using low and high ultrasonic frequencies (28 and 1000 kHz). In the absence of catalysts, the sonochemical degradation at pH 7, optimum power of 0.18 W mL−1, and a temperature of 15 °C was higher (79% and 72%) at 1000 kHz than at 28 kHz (45% and 33%) for IBP and SMX, respectively. At the low frequency (28 kHz) H2O2 production increased significantly, from 10 μM (no GBs) to 86 μM in the presence of GBs (0.1 mm, 10 g L−1); however, no enhancement was achieved at 1000 kHz. In contrast, the H2O2 production increased from 10 μM (no SWNTs) to 31 μM at 28 kHz and from 82 μM (no SWNTs) to 111 μM at 1000 kHz in the presence of SWNTs (45 mg L−1). Thus, maximum removals of IBP and SMX were obtained in the presence of a combination of GBs and SWNTs at the low frequency (94% and 88%) for 60 min contact time; however, >99% and 97% removals were achieved for 40 and 60 min contact times at the high frequency for IBP and SMX, respectively. The results indicate that both IBP and SMX degradation followed pseudo-first-order kinetics. Additionally, the enhanced removal of IBP and SMX in the presence of catalysts was because GBs and SWNTs increased the number of free OH radicals due to ultrasonic irradiation and the adsorption capacity increase with SWNT dispersion. 相似文献
8.
9.
Sonocatalytic removal of ibuprofen and sulfamethoxazole in the presence of different fly ash sources
We examined the feasibility of using two types of fly ash (an industrial waste from thermal power plants) as a low-cost catalyst to enhance the ultrasonic (US) degradation of ibuprofen (IBP) and sulfamethoxazole (SMX). Two fly ashes, Belews Creek fly ash (BFA), from a power station in North Carolina, and Wateree Station fly ash (WFA), from a power station in South Carolina, were used. The results showed that >99% removal of IBP and SMX was achieved within 30 and 60 min of sonication, respectively, at 580 kHz and pH 3.5. Furthermore, the removal of IBP and SMX achieved, in terms of frequency, was in the order 580 kHz > 1000 kHz > 28 kHz, and in terms of pH, was in the order of pH 3.5 > pH 7 > pH 9.5. WFA showed significant enhancement in the removal of IBP and SMX, which reached >99% removal within 20 and 50 min, respectively, at 580 kHz and pH 3.5. This was presumably because WFA contains more silicon dioxide than BFA, which can enhance the formation of OH radicals during sonication. Additionally, WFA has finer particles than BFA, which can increase the adsorption capacity in removing IBP and SMX. The sonocatalytic degradation of IBP and SMX fitted pseudo first-order rate kinetics and the synergistic indices of all the reactions were determined to compare the efficiency of the fly ashes. Overall, the findings have showed that WFA combined with US has potential for treating organic pollutants, such as IBP and SMX, in water and wastewater. 相似文献
10.
An ultrasonic microreactor with rough microchannels is presented in this study for oil-in-water (O/W) emulsion generation. Previous accounts have shown that surface pits or imperfections localize and enhance cavitation activity. In this study cavitation bubbles are localized on the rough microchannels of a borosilicate glass microreactor. The cavitation bubbles in the microchannel are primarily responsible for emulsification in the ultrasonic microreactor. We investigate the emulsification mechanism in the rough microchannels employing high-speed imaging to reveal the different emulsification modes influenced by the size and oscillation intensity of the cavitation bubbles. The effect of emulsification modes on the O/W emulsion droplet size distribution for different surface roughness and frequency is demonstrated. The positive effect of the frequency on minimizing the droplet size utilizing a reactor with large pits is presented. We also demonstrate microreactor systems for a successful generation of miniemulsions with high dispersed phase volume fractions up to 20%. The observed emulsification mechanism in the rough microchannel offers new insights into the utility and scale-up of ultrasonic microreactors for emulsification. 相似文献
11.
Due to unique reaction conditions of the acoustic cavitation process, ultrasound-assisted synthesis of nanoparticles has attracted increased research attention. In this study, we demonstrate the effect of ultrasonic irradiation on the crystallinity, stability, biocompatibility, and magnetic properties of chitosan-coated superparamagnetic iron oxide nanoparticles (CS-SPIONs). CS solution and colloidal suspension of SPIONs were mixed and sonicated using an ultrasonic probe of 1.3 cm tip size horn, frequency (20 kHz), and power (750 W). Different samples were sonicated for 1.5, 5, and 10 min with corresponding acoustic powers of 67, 40 and 36 W, and the samples were denoted S1.5, S5, and S10, respectively. The samples were characterized using X-ray diffractometer (XRD), Energy dispersive X-ray (EDX), Transmission electronic microscope (TEM), Fourier transform infrared spectroscopy (FTIR), Zeta sizer, and vibrating sample magnetometer (VSM). Cell cytotoxicity and cell uptake were investigated with human embryonic kidney 293 (HEK-293) cells through MTT assay and Prussian blue staining, respectively. The sharp peaks of the XRD pattern were disappearing with an increase in the sonication period but a decrease in acoustic power. EDX analysis also demonstrates that atomic and weight percentages of the various elements in the samples were decreasing with an increase in the sonication period. However, the Zeta potential (ζ) values increase with an increase in the sonication period.The saturation magnetization (Ms) of the S1.5 before and after the coating is 62.95 and 86.93 emu/g, respectively. Cell cytotoxicity and uptake of the S1.5 show that above 70% of cells were viable at the highest concentration and the longest incubation duration. Importantly, the CS-SPIONs synthesized by the sonochemical method are non-toxic and biocompatible. 相似文献
12.
13.
In this paper, the effects of ultrasonic probe position, vessel shape, and ultrasonic input power on the sound pressure distribution in the reactor were investigated by solving the Helmholtz equation using COMSOL Multiphysis@ software. Three different types of glass containers were used in the study, which are beaker, Erlenmeyer flask, and round bottom flask. The maximum value of sound pressure in the three containers will gradually increase when the distance between the probe and the bottom of the container decreases. When the distance decreases, the area of the high acoustic pressure region in the round bottom flask does not change significantly, while the area of the high acoustic pressure region in the beaker and Erlenmeyer flask increases sharply, which means that the use of the round bottom flask can reduce the influence of the dead zone on the preparation of nanomaterials. In addition, the change in power increases the value of the peak negative acoustic pressure in the vessel, enhancing the response efficiency of ultrasonic cavitation. 相似文献
14.
Water is one of the major sources that spread human diseases through contamination with bacteria and other pathogenic microorganisms. This review focuses on microbial hazards as they are often present in water and wastewater and cause various human diseases. Among the currently used disinfection methods, sonochemical reactors (SCRs) that produce free radicals combined with advanced oxidation processes (AOPs) have received significant attention from the scientific community. Also, this review discussed various types of cavitation reactors, such as acoustic cavitation reactors (ACRs) utilizing ultrasonic energy (UE), which had been widely employed, involving AOPs for treating contaminated waters. Besides ACRs, hydrodynamic cavitation reactors (HCRs) also effectively destroy and deactivate microorganisms to varying degrees. Cavitation is the fundamental phenomenon responsible for initiating many sonochemical reactions in liquids. Bacterial degradation occurs mainly due to the thinning of microbial membranes, local warming, and the generation of free radicals due to cavitation. Over the years, although extensive investigations have focused on the antimicrobial effects of UE (ultrasonic energy), the primary mechanism underlying the cavitation effects in the disinfection process, inactivation of microbes, and chemical reactions involved are still poorly understood. Therefore, studies under different conditions often lead to inconsistent results. This review investigates and compares other mechanisms and performances from greener and environmentally friendly sonochemical techniques to the remediation of microbial hazards associated with water and wastewater. Finally, the energy aspects, challenges, and recommendations for future perspectives have been provided. 相似文献
15.
Ultrasound (US) and Microwaves (MW) are effective methods for processes intensification. Their combined use in the same reactor can lead to remarkable results. Recently there has been a resurgence of interest in this field for new synthetic applications using reactors based upon existing technologies. We describe here a new type of apparatus in which the thermal energy is continuously removed from the system making possible the use of high power and adjustable ultrasonic and microwave densities throughout the process. The installation consists of a glass reactor located in a monomode applicator which is immersed at the same time in an ultrasonic device which can be operated at different frequencies and powers. A liquid, transparent to microwaves, was used to couple ultrasonic energy to the reactor and to remove the heat generated. Comsol software was used to get information about the distribution of ultrasonic and microwave energy between the reactor liquid and the coupling fluid. The performance was assessed using the conversion of p-nitrophenol into 4-nitrocatechol as a chemical dosimeter and a transesterification. 相似文献
16.
《Ultrasonics sonochemistry》2014,21(5):1900-1906
The efficiency of ultrasonic cleaning vessels cannot be measured directly in an easy way. In the presented work, a sensor is developed which quantitatively measures the ablation of a test layer. The sensor element is a quartz crystal which is coated with a sacrificial layer. Small changes in mass of this layer can be measured by a frequency shift of the crystal oscillation. For measurements, a 10 MHz AT-cut quartz crystal was used in a cleaning vessel working at 44.9 kHz. To determine the frequency shift by the ablation of the test layer, the quartz crystal was driven by a frequency generator sweeping the frequency in the range of the resonance frequency and a characteristic frequency was determined. The test layer which was applied to the quartz crystal consisted of silica microparticles suspended in varnish. In a preliminary experiment using a commercial cleaner it could be shown that significant changes in resonance frequency by cavitation effect could be detected. The initial frequency shift of the sacrificial layer is reproducible within 10%. The test layer can be adapted to the conditions of the cleaning vessel. By changing the electrical input power of the vessel, a threshold in the cavitation erosion was found. 相似文献
17.
It is well known that ultrasonic cavitation causes a steady flow termed acoustic streaming. In the present study, the velocity of acoustic streaming in water and molten aluminum is measured. The method is based on the measurement of oscillation frequency of Karman vortices around a cylinder immersed into liquid. For the case of acoustic streaming in molten metal, such measurements were performed for the first time. Four types of experiments were conducted in the present study: (1) Particle Image Velocimetry (PIV) measurement in a water bath to measure the acoustic streaming velocity visually, (2) frequency measurement of Karman vortices generated around a cylinder in water, and (3) in aluminum melt, and (4) cavitation intensity measurements in molten aluminum. Based on the measurement results (1) and (2), the Strouhal number for acoustic streaming was determined. Then, using the same Strouhal number and measuring oscillation frequency of Karman vortices in aluminum melt, the acoustic streaming velocity was measured. The velocity of acoustic streaming was found to be independent of amplitude of sonotrode tip oscillation both in water and aluminum melt. This can be explained by the effect of acoustic shielding and liquid density. 相似文献
18.
This paper presents a comprehensive experimental and numerical investigation of the effects of liquid temperature on the sonochemical degradation of three organic dyes, Rhodamine B (RhB), Acid orange 7 (AO7) and Malachite green (MG), largely used in the textile industry. The experiments have been carried out for an ultrasonic frequency of 300 kHz. The obtained experimental results were discussed using a new approach combining the results of single-bubble event and the number of active bubbles. The single-bubble event was predicted using a model that combines the bubble dynamics with chemical kinetics occurring inside a bubble during the strong collapse. The number of active bubbles was predicted using a method developed in our previous work. The experiments showed that the degradation rate of the three dyes increased significantly with increasing liquid temperature in the range 25–55 °C. It was predicted that the main pathway of pollutants degradation is the attack by OH radicals. The simulations showed that there exists an optimum liquid temperature of about 35 °C for the production of OH inside a bubble whereas the number of active bubbles increased sharply with the rise of the liquid temperature. It was predicted that the overall production rate of OH increased with increasing liquid temperature in the range 25–55 °C. Finally, it was concluded that the effect of liquid temperature on the sonochemical degradation of the three dyes in aqueous phase was controlled by the number of active bubbles in the range 35–55 °C and by both the number of bubbles and the single bubble yield in the range 25–35 °C. 相似文献
19.
20.
This review was compiled as part of a project to formulate a UK strategy for the development and standardisation of measurement methods for high power/cavitating ultrasonic fields. It reviews the scientific literature relating to various methods of measuring high power fields which have been developed for application in health care, sonochemistry and industrial ultrasonics, and compares these methods in terms of attributes such as spatial resolution, bandwidth and sensitivity. 相似文献