首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, BiOI decorated TiO2 photocatalysts were prepared in-situ by a facile hydrothermal method and characterized by X-ray diffraction (XRD), UV/Vis diffuse reflectance spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and surface photovoltage (SPV) spectroscopy. The reactive radicals during the photocatalytic reaction were detected by scavenger experiments. BiOI/TiO2 composites exhibit higher performance than the pure TiO2 towards photocatalytic decolorization of methyl orange (MO) aqueous solution, when the molar ratio of Bi/Ti is 2%, the sample has the highest photocatalytic activity. The enhanced photocatalytic performance of BiOI/TiO2 could be ascribed to the separation properties of photo-induced charge carriers and strong interaction between BiOI and TiO2. Based on the observations, a Z-scheme charge separation mechanism was proposed.  相似文献   

2.
Binary BiOI/TiO2 hybrid material was synthesized via a sol-gel method combined with chemical etching. The as-prepared powders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DRS), photoluminescence spectra (PLS) and photocurrent response tests. Under visible light (λ > 420 nm), BiOI/TiO2 degraded methyl orange (MO) efficiently and displayed much higher photocatalytic activity than that of pure BiOI. Moreover, BiOI/TiO2 can effectively promote photooxidation of other organic dyes like rhodamine B (RhB), crystal violet (CV) and methylene blue (MB). In addition, the quenching effects of different scavengers proved that reactive O 2 ? and h+ played the major role in the MO degradation. The photocatalytic activity enhancement of BiOI/TiO2 is closely related to the strong absorption in the visible region, and the efficient charge separation derived from the matching band potentials between BiOI and TiO2, as well as the low recombination rate of the electron-hole pairs due to the heterojunction formed between BiOI and TiO2.  相似文献   

3.
根据表面化学蚀刻原理采用加热冷凝回流的方法制备了一系列组成的异质结构BiOI/NaBiO3光催化剂.利用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)和紫外-可见漫反射光谱(UV-Vis-DRS)等技术对其晶相结构、微观形貌和光吸收性能进行了表征.光催化实验表明,BiOI/NaBiO3在可见光下可以有效降解罗丹明B(RhB),当BiOI与NaBiO3的物质的量分数为一定值时,异质结构的光催化剂明显优于单一组分的光催化活性.通过加入不同的牺牲剂及荧光实验结果推测了该异质结构材料的光催化机理,并且分析了其光生载流子的传输方向及光催化过程的活性物种.研究表明,BiOI/NaBiO3的催化活性增强主要归结为两者之间形成了有效的异质结构,其内建电场能够促进光生载流子的分离,同时光生空穴h+在光催化降解过程中是主要的活性物种.  相似文献   

4.
In this work, environmentally friendly photocatalysts with attractive catalytic properties are reported that have been prepared by introducing SnO2 quantum dots (QDs) directly onto ZnSe(N2H4)0.5 substrates to induce advantageous charge separation. The SnO2/ZnSe(N2H4)0.5 nanocomposites could be easily synthesized through a one-pot hydrothermal process. Owing to the absence of capping ligands, the attached SnO2 QDs displayed superior photocatalytic properties, generating many exposed reactive surfaces. Moreover, the addition of a specified amount of SnO2 boosted the visible-light photocatalytic activity; however, the presence of excess SnO2 QDs in the substrate resulted in aggregation and deteriorated the performance. The spectroscopic data revealed that the SnO2 QDs act as a photocatalytic mediator and enhance the charge separation within the type II band alignment system of the SnO2/ZnSe(N2H4)0.5 heterojunction photocatalysts. The separated charges in the heterojunction nanocomposites promote radical generation and react with pollutants, resulting in enhanced photocatalytic performance.  相似文献   

5.
Zheng  Wei  Feng  Sheng  Shao  Cong  Zhu  Guiliang  Ni  Ziqiu  Sun  Jiajia  Huang  Xianglin 《Research on Chemical Intermediates》2020,46(6):2951-2967

A novel binary photocatalytic composite (BiOI/ZIF-8) was successfully constructed by solvothermal method. Its crystal morphology, chemical state of the elements and electrochemical properties were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and photoluminescence analysis. Appropriate ZIF-8 doping enhanced the separation and utilization of photogenerated electrons, promoted the capture of contaminants and rapidly produces active species, thereby accelerating the photocatalytic degradation of contaminants. Degradation experiments on BPA showed that the photocatalytic property of BiOI/ZIF-8 (0.5) was significantly improved compared with the parent material. BiOI/ZIF-8 (0.5) showed the highest reaction rate constant (0.06061 min?1), 9.2 times that of BiOI (0.00659 min?1) and 23.3 times that of ZIF-8 (0.0026 min?1). In addition, five cycle tests showed that BiOI/ZIF-8 was highly efficient in recycling and stability. Through capture experiments, superoxide free radicals ·OH, h? and ·O2? play an important role in degrading BPA, among which superoxide free radicals h+ play a major role.

  相似文献   

6.
One-dimensional (1D) Ag/AgBr/TiO2 nanofibres (NFs) have been successfully fabricated by the one-pot electrospinning method. In comparison with bare TiO2 NFs and Ag/AgBr/PVP (polyvinylpyrrolidone) NFs, the 1D Ag/AgBr/TiO2 NFs photocatalyst exhibits much higher photocatalytic activity in the degradation of a commonly used dye, methylene blue (MB), under visible light. The photocatalytic removal efficiency of MB over Ag/AgBr/TiO2 NFs achieves almost 100 % in 20 min. The photocatalytic reaction follows the first-order kinetics and the rate constant (k) for the degradation of MB by Ag/AgBr/TiO2 NFs is 5.2 times and 6.6 times that of Ag/AgBr/PVP NFs and TiO2 NFs, respectively. The enhanced photocatalytic activity is ascribed to the stronger visible light absorption, more effective separation of photogenerated electron-hole pairs, and faster charge transfer in the long nanofibrous structure. The Ag/AgBr/TiO2 NFs maintain a highly stable photocatalytic activity due to its good structural stability and the self-stability system of Ag/AgBr. The mechanisms for photocatalysis associated with Ag/AgBr/TiO2 NFs are proposed. The degradation of MB in the presence of scavengers reveals that h+ and ?O 2 ? significantly contribute to the degradation of MB.  相似文献   

7.
In this work, a series of novel SnO2/ZnO nanocomposites with different morphologies were fabricated via a facile hydrothermal technique followed by calcination in air. The morphological, structural and photocatalytic properties of the SnO2/ZnO nanocomposites were studied using different methods. The results showed that the synthesized nanocomposites possessed crystal phases of wurtzite hexagonal phase ZnO and tetragonal rutile phase SnO2. In addition, the morphologies of SnO2/ZnO nanocomposites strongly depended on the molar ratios of Sn and Zn. Compared with ZnO and SnO2, the SnO2/ZnO nanocomposites exhibited considerably higher degradation efficiency for the photodegradation of methylene blue and quinolone antibiotics under mercury lamp irradiation. The SZ‐2 nanospheres exhibited the highest degradation efficiency of 95.81%, which was about 2.63 times higher than that of ZnO nanoparticles. Moreover, the trapping experiments confirmed that ˙OH played the dominant role in MB degradation. Finally, the charge carriers potential transfer pathway and photocatalytic degradation mechanism were put forward. This study provides an economical way to prepare hybrid nanocomposites with controlled morphology for practical applications in the photocatalytic degradation of organic dyes and residual antibiotics.  相似文献   

8.
The SnO/SnO2 nanocomposites were synthesized using semisolvothermal reaction technique. These nanocomposites were prepared using different combination of solvents viz., ethanol, water, and ethylene glycol at 180 °C for 24 h. The synthesized nanocomposites were analyzed with various characterization techniques. Structural analysis indicates the formation of tetragonal phase of SnO2 for the sample prepared in ethanol, whereas for other solvent combinations, the mixture of SnO and SnO2 having tetragonal crystal structures were observed. The optical study shows enhanced absorbance in the visible region for all the prepared SnO/SnO2 nanocomposites. The observed band gap was found to be in the range of 3.0 to 3.25 eV. Microstructural determinations confirm the formation of nanostructures having spherical as well as rod-like morphology. The size of nanoparticles in ethanol-mediated solvent was found to be in the range of 5 to 7 nm. Thermogravimetric analysis indicate the weight gain around 1.3 wt% confirming the conversion of SnO to SnO2 material. The photocatalytic activity of synthesized nanocomposites was evaluated by following the aqueous methylene blue (MB) degradation. The sample prepared in ethylene glycol-mediated solvent showed highest photoactivity having apparent rate constant (Kapp) 0.62 × 10?2 min?1.  相似文献   

9.
采用简单的沉积方法制备了不同碘化氧铋含量的BiOI/Bi2WO6光催化剂,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HR-TEM)、紫外-可见漫反射光谱(UV-VisDRS)和BET比表面积测量对其进行了表征。在紫外和可见光的照射下,使用甲基橙和苯酚的光催化降解评价了BiOI/Bi2WO6催化剂的光催化性能。结果表明:与商业P25和纯Bi2WO6相比,13.2%BiOI/Bi2WO6光催化剂具有更高的紫外和可见光催化性能。这明显增加的光催化活性主要归功于光生电子和空穴在Bi2WO6和BiOI界面上的有效转移,降低了电子-空穴对的复合。基于BiOI和Bi2WO6的能带结构,提出了光生载流子的一种转移过程。自由基清除剂的实验表明,OH,h+,O2和H2O2,特别是h+,共同支配了甲基橙和苯酚的光催化降解过程。  相似文献   

10.
异质型BiOI/NaBiO_3光催化剂的合成及其光催化性能   总被引:2,自引:0,他引:2  
根据表面化学蚀刻原理采用加热冷凝回流的方法制备了一系列组成的异质结构BiOI/NaBiO3光催化剂。利用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)和紫外-可见漫反射光谱(UV-Vis-DRS)等技术对其晶相结构、微观形貌和光吸收性能进行了表征。光催化实验表明,BiOI/NaBiO3在可见光下可以有效降解罗丹明B(RhB),当BiOI与NaBiO3的物质的量分数为一定值时,异质结构的光催化剂明显优于单一组分的光催化活性。通过加入不同的牺牲剂及荧光实验结果推测了该异质结构材料的光催化机理,并且分析了其光生载流子的传输方向及光催化过程的活性物种。研究表明,BiOI/NaBiO3的催化活性增强主要归结为两者之间形成了有效的异质结构,其内建电场能够促进光生载流子的分离,同时光生空穴h+在光催化降解过程中是主要的活性物种。  相似文献   

11.
Heterostructured SnO2/CuO nanofibers with a hollow morphology were successfully fabricated by a one-step electrospinning method. The electrospun nanofibers were transformed into hollow nanostructures in the presence of camphene after a calcination process, and the obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflection spectroscopy (DRS), photoluminescence spectra (PL), and photodegradation measurements. The scanning electron microscopy (SEM) images displayed a rough and hollow structure for the obtained nanofibers. X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX) identified the molecular composition and chemical interactions of the nanofibers. Photoluminescent (PL) measurements indicated that a recombination of the photoinduced electrons and holes was further inhibited due to the hollow nanostructure. Furthermore, the photodegradation of methylene blue suggested that the heterostructured SnO2/CuO hollow nanofibers possessed higher charge separation and photodegradation abilities than those of the other samples under visible light irradiation. This work can be potentially applied to the fabrication of other inorganic oxide photocatalysts with enhanced photodegradation activity in the field of environmental remediation.  相似文献   

12.
通过一步溶剂热法合成ZnO/BiOI纳米复合材料,在Bi(NO33·6H2O、KI、ZnO和乙二醇(EG)溶剂中,制备出的样品尺寸和形貌采用X射线粉末衍射(XRD)、场发射扫描电镜(FESEM)、高分辨透射电镜(HRTEM)、紫外-可见漫反射光谱(DRS)、X射线光电子能谱(XPS)、N2吸附-脱附等,对实验所得产物的组成、结构及光学性质等进行表征。以染料罗丹明B(RhB)水溶液和气态乙醛作为降解对象,采用BiOI、ZnO/BiOI和ZnO微纳材料作为光催化剂,通过对BiOI、ZnO/BiOI和ZnO微纳材料在可见光下光催化降解染料罗丹明B(RhB)水溶液和气态乙醛,结果表明多孔微纳材料的ZnO/BiOI具有更高的降解效率,实验表明多孔微纳材料的ZnO/BiOI具有更高的氧空位浓度,因此使其催化活性增强,讨论了其可能的催化活性机理。  相似文献   

13.
基于微波水热法和微乳液法合成SnO2/TiO2纳米管复合光催化剂. 通过X射线衍射(XRD)、配有能量色散X射线光谱仪(EDX)的透射电镜(TEM)和电化学手段对光催化剂进行表征. 以甲苯为模型污染物,考察光催化剂在紫外光(UV)和真空远紫外光(VUV)下的性能及失活再生. 结果表明,SnO2/TiO2纳米管复合光催化剂形成三元异质结(锐钛矿相TiO2(A-TiO2)/金红石相TiO2(R-TiO2)、A-TiO2/SnO2和R-TiO2/SnO2异质结),促使光生电子-空穴对的有效分离,提高光催化活性. SnO2/TiO2表现出最佳的光催化性能,UV和VUV条件下的甲苯降解率均达100%,CO2生成速率(k2)均为P25的3倍左右. 但由于UV光照矿化能力不足,中间产物易在催化剂表面累积. 随着UV光照时间的增加,SnO2/TiO2逐渐失活,20 h 后k2由138.5 mg·m-3·h-1下降到76.1 mg·m-3·h-1. 利用VUV再生失活的SnO2/TiO2,过程中产生的·OH、O2、O(1D)、O(3P)、O3等活性物质可氧化吸附于催化剂活性位的难降解中间产物,使催化剂得以再生,12 h后k2恢复到143.6 mg·m-3·h-1. UV和VUV的协同效应使UV降解耦合VUV再生成为一种可持续的光催化降解污染物模式.  相似文献   

14.
Addressing arsenite pollution in groundwater has drawn great attention. It is attractive to pre-oxidize highly mobile As(III) to relatively low-toxic As(V) with a subsequent adsorption separation process. Herein, BiOI anchoring on γ-Fe2O3 is performed to synthesize BiOI/γ-Fe2O3 core–shell nanoparticles for efficient removal of As(III) via a simultaneous photocatalytic oxidization–adsorption process. The physical and chemical structures of BiOI/γ-Fe2O3 are investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction measurements. The photoluminescence and electron spin resonance (ESR) characterization were employed to ascertain the possible reaction mechanism of visible-light-driven photocatalytic oxidation of As(III). Such BiOI/γ-Fe2O3 delivers a superior As(III) removal capability under visible light irradiation with an arsenic removal efficiency of 99.8% within 180 min, higher than those of BiOCl/γ-Fe2O3 (81.7%) and BiOBr/γ-Fe2O3 (98.9%). The optimal BiOI/γ-Fe2O3 (molar ratio of 2:1) is obtained by rationally adjusting the molar ratio of BiOI to γ-Fe2O3. The as-synthesized BiOI/γ-Fe2O3 performs well in a wide pH range of 2–8. Only coexisting PO43? anions have a significant effect on the As(III) removal. The free radical trapping experiment and ESR results demonstrate that the ?O2? and h+ are the main active substances for the photocatalytic oxidation of As(III) on BiOI/γ-Fe2O3. This work not only gives a novel magnetic core–shell nanoparticle photocatalyst for efficient photocatalytic oxidation and adsorption of As(III) but also offers a new strategy to rationally design BiOX for its related practical applications.  相似文献   

15.
采用简单的沉积方法制备了不同碘化氧铋含量的BiOI/Bi2WO6光催化剂,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HR-TEM)、紫外-可见漫反射光谱(UV-Vis DRS)和BET比表面积测量对其进行了表征。在紫外和可见光的照射下,使用甲基橙和苯酚的光催化降解评价了BiOI/Bi2WO6催化剂的光催化性能。结果表明:与商业P25和纯Bi2WO6相比,13.2%BiOI/Bi2WO6光催化剂具有更高的紫外和可见光催化性能。这明显增加的光催化活性主要归功于光生电子和空穴在Bi2WO6和BiOI界面上的有效转移,降低了电子-空穴对的复合。基于BiOI和Bi2WO6的能带结构,提出了光生载流子的一种转移过程。自由基清除剂的实验表明,·OH,h+,·O2-和H2O2,特别是h+,共同支配了甲基橙和苯酚的光催化降解过程。  相似文献   

16.
通过一步溶剂热法合成ZnO/BiOI纳米复合材料,在Bi(NO33·6H2O、KI、ZnO和乙二醇(EG)溶剂中,制备出的样品尺寸和形貌采用X射线粉末衍射(XRD)、场发射扫描电镜(FESEM)、高分辨透射电镜(HRTEM)、紫外-可见漫反射光谱(DRS)、X射线光电子能谱(XPS)、N2吸附-脱附等,对实验所得产物的组成、结构及光学性质等进行表征。以染料罗丹明B(RhB)水溶液和气态乙醛作为降解对象,采用BiOI、ZnO/BiOI和ZnO微纳材料作为光催化剂,通过对BiOI、ZnO/BiOI和ZnO微纳材料在可见光下光催化降解染料罗丹明B(RhB)水溶液和气态乙醛,结果表明多孔微纳材料的ZnO/BiOI具有更高的降解效率,实验表明多孔微纳材料的ZnO/BiOI具有更高的氧空位浓度,因此使其催化活性增强,讨论了其可能的催化活性机理。  相似文献   

17.
The paper investigates the structural, optical and photocatalytic activity of large surface area single crystalline copper (Cu) doped SnO2 nanorods (NRs) synthesized by a novel one-step microwave irradiation method. Powder X-ray diffraction (XRD) analysis confirms that both pure and Cu doped SnO2 are tetragonal rutile type structure (space group P42/mnm) formed during the microwave process within 10 min without any post annealing treatment. Transmission electron microscopy (TEM) reveals that the as synthesized Cu doped SnO2 samples exhibited rod-like shape and the length was less than 80 nm and diameter was about few nanometers. Typical selected-area electron diffraction (SAED) pattern indicates that, the growth direction of Cu–SnO2 nanorod is along [110] direction. The variety of phonon interaction in the pure and Cu doped SnO2 is observed by Raman spectroscopy. Electron paramagnetic resonance and X-ray photoelectron spectroscopy (XPS) confirms that the presence of copper and tin as Cu2+ and Sn4+ in state, respectively. The photocatalytic activity was monitored via the degradation of methylene blue (MB) and Rhodamine B (RhB) dyes and the Cu–SnO2 showed better photocatalytic activity than that of pure SnO2. This could be attributed to the effective electron–hole separation by surface modification.  相似文献   

18.
Narrow-band BiOI photocatalysts usually suffer from low photocatalysis efficiency under visible light exposure because of rapid charge recombination. In this work, to overcome this deficiency of photosensitive BiOI, oxygen vacancies, Bi particles, and Bi2O2CO3 were co-induced in BiOI via a facile in situ assembly method at room temperature using NaBH4 as the reducing agent. In the synthesized ternary Bi/BiOI/(BiO)2CO3, the oxygen vacancies, dual heterojunctions (i.e., Bi/BiOI and BiOI/(BiO)2CO3), and surface plasmon resonance effect of the Bi particles contributed to efficient electron-hole separation and an increase in charge carrier concentration, thus boosting the overall visible light photocatalysis efficiency. The as-prepared catalysts were applied for the removal of NO in concentrations of parts per billion from air in continuous air flow under visible light illumination. Bi/BiOI/(BiO)2CO3 exhibited a highly enhanced NO removal ratio of 50.7%, much higher than that of the pristine BiOI (1.2%). Density functional theory calculations and experimental results revealed that the Bi/BiOI/(BiO)2CO3 composites promoted the production of reactive oxygen species for photocatalytic NO oxidation. Thus, this work provides a new strategy to modify narrow-band semiconductors and explore other bismuth-containing heterostructured visible-light-driven photocatalysts.  相似文献   

19.
In this research, we adopted morphology control and constructing p-n heterojunction to boost the photocatalytic performance of BiOI. BiOI with three morphologies (nanoplate, micro-flower, microsphere) was fabricated via a wet-chemical method at room temperature using different solvents. And Bi2WO6/BiOI microspheres were successfully prepared by a microwave-assisted synthetic method. The as-synthesized samples were characterized by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive Spectroscopy (EDS) and High-resolution Transmission Electron Microscopy (HRTEM). The results of photo-degradation experiment demonstrated that BiOI-3 and BWOI-3 show high photocatalytic performance towards methyl orange (MO) and bisphenol A (BPA) degradation due to the high specific surface area, synergistic effect between p-type BiOI and n-type Bi2WO6 and high separation efficiency of electron-hole pairs, which is verified by Brunauer-Emmett-Teller (BET), Photocurrent (PC) and Electrochemical Impedance Spectroscopy (EIS) analysis. Moreover, the repeated photocatalytic experiment was carried out by using MO as the representative organic pollutant, manifesting the good durability of the sample.  相似文献   

20.
Controlled polydopamine (PDA)-coated TiO2 composite nanofibers (NFs) were successfully fabricated via a facile electrospinning process and exposing TiO2 NFs into a slightly alkaline dopamine solution. Chemical composition, structural morphology, and photocatalytic degradation property of as-prepared TiO2 NFs and PDA-coated TiO2 composite NFs were characterized by Fourier transfer infrared, X-ray photoelectron spectra, transmission electron microscopy, UV-vis diffuse reflectance spectra, and photocatalytic degradation experiments. The results indicated that the core-shell TiO2@PDA composite NFs were successfully prepared and the thickness of PDA shell was highly controlled within several nanometers. And obtained TiO2@PDA composite NFs exhibited improved photocatalytic performance after PDA coating, which is attributed to the photosensitization of PDA shell. Moreover, with increased pH values of initial solution, both absorption capacity in the dark and photocatalytic performance of TiO2@PDA composite NFs showed significant improvement. Additionally, the obtained composite NFs showed different degrees of enhancement in photocatalytic performance based on different dyes, which is related to the “bait” effect of PDA shell. Comparing with anionic dyes, TiO2@PDA composite NFs tended to adsorb and degrade more cationic dye molecules. It is anticipated that the fabricated composite NFs with controlled core-shell structure have great potential to be applied for organic pollutants removal, especially cationic dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号