首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, poly(methyl methacrylate)-grafted-nanosilica (PMMA-g-silica) and a copolymer of styrene (St), n-butyl acrylate (BA) and acrylic acid (AA)-grafted-nanosilica (PSBA-g-silica) hybrid nanoparticles were prepared by using a heterophase polymerization technique in an aqueous system. The grafted polymers made up approximately 50 wt.% of the resulted hybrid nanoparticles which showed a spherical and well-dispersed morphology. The silica hybrid nanoparticles were subsequently used as fillers in a poly(vinyl chloride) (PVC) matrix to fabricate PVC nanocomposite. Morphology study of PVC nanocomposites revealed that both PMMA- and PSBA-grafted-silica had an adhesive interface between the silica and PVC. The tensile strength and elongation to break were found to be improved significantly in comparison with that of untreated nanosilica/PVC composites. Finally our results clearly demonstrated that the properties (e.g. chain flexibility, composition) of the grafted polymer in the hybrid nanoparticles could significantly affect the dispersion behavior of hybrid nanoparticles in PVC matrix, dynamic mechanical thermal properties and mechanical properties of the resulted PVC composites.  相似文献   

2.
Nanocomposite vulcunizates based on a SBR/ENR50 (50/50%wt) rubber blend containing nanoclay (5 or 10 phr) with and without carbon black (CB 20 phr) were prepared by melt blending in an internal mixer. The compound containing 35 phr carbon black (only) was prepared as a reference sample. Microstructure of nanocomposite samples was investigated by using X-ray diffraction (XRD), melt rheo-mechanical spectroscopy (RMS), and scanning electron microscopy (SEM). The XRD patterns revealed that the distance between the clay layers were increased by adding CB to the nanocomposite samples; they caused better diffusion of chains between the layers and resulted in an intercalated structure. The RMS results also indicated the formation of the filler-filler networks. SEM images of fracture surfaces showed the presence of much roughness in the samples containing both nanoclay and CB compared to the other samples. The results obtained from application of the Flory–Rhener equation showed a high crosslink density for the sample with 10 phr nanoclay and 20 phr CB. Dynamic mechanical behavior, mechanical properties, and abrasion resistance of the nanocomposites were evaluated. The results indicated that the sample containing 10 phr nanoclay and 20 phr CB had an increased dynamic elastic modulus, reduced maximum loss factor (tanδ)max,, and an improved tensile strength and abrasion resistance compared to the reference sample. Also, this sample showed the lowest maximum loss factor, at 50–60°C, so it can be a candidate for tire-tread application.  相似文献   

3.
ABSTRACT

The microstructure evolution and property change of four kinds of low silicon cast aluminum alloy exposed to heat for 0–50?h at 200°C were studied by means of Brinell hardness test, tensile property test, friction and wear property test and XRD analysis. The results show that with increasing thermal exposure time, the tensile strength of each group of samples decreased and the amount of wear increased. The tensile strength of samples with more Si content decreased slowly. When the time increased to 50?h, the increase of wear loss was the largest. The hardness of samples after thermal exposure increases compared with that before thermal exposure. The residual stress of (311) diffraction crystal surface of AlSi3.5Mg0.66 under different thermal exposure time was measured. The type of residual stress changed from residual tensile stress to residual compressive stress after thermal exposure. There is an abnormal phenomenon that the hardness of the sample increased and the amount of wear increased, and it is evident that the distribution of residual stress was inhomogeneous after thermal exposure. It is found that with increasing thermal exposure time to 50?h, the average lattice distortion ε of the low-index crystal plane and the high-index crystal plane in the aluminum alloys gradually increased.  相似文献   

4.
This effort reports on novel fluorinated polyamide (FPA) and polyamide 1010 (PA1010)-based blends and graphene reinforced nanocomposite. PA1010/FPA (80:20) blend was opted as matrix material on the basis of molecular weight, thermal, and shear stress performance. Graphene was obtained through in situ chemical method of graphene oxide reduction. PA1010/FPA/Graphene nanocomposites was developed using various graphene loadings (up to 5 wt.%). Thin film coatings were prepared on glass substrate. Consequently, the PA1010/FPA/Graphene attained regular spongy morphological pattern. PA1010/FPA/Graphene 3 also showed improved T0 and Tmax of 534 and 591 °C relative to the neat blend (T10 423 °C; Tmax 551 °C). Limiting oxygen index measurement indicated better non-flammability of PA1010/FPA/Graphene 1–3 nanocomposite series (57–60%) relative to the blend series (28–31%). UL94 tests also showed V-0 rating for nanocomposites. Furthermore, PA1010/FPA/Graphene 3 nanocomposite revealed significantly high tensile strength (62 MPa), flexural modulus (1690 MPa), and adhesive properties to be utilized as coating materials. The nanocomposite coatings also displayed outstanding barrier properties against O2 and H2O compared with neat blends.  相似文献   

5.
Abstract

Polyacrylamide grafted cellulose nanocrystals (CNC-g-PAM) were incorporated into poly(vinyl alcohol) (PVA) by a solution casting method to fabricate nanocomposite films with enhanced thermal and tensile properties. The microstructure and the thermal and tensile properties of the PVA/CNC-g-PAM nanocomposite films were investigated as a function of CNC-g-PAM content. Infrared spectroscopy corroborated the presence of hydrogen bonds between PVA and the PAM on the surface of the CNC. Polarized optical microscopy and scanning electron microscopy revealed good dispersion of the CNC-g-PAM in the PVA matrix and good interfacial compatibility. Accordingly, the initial degradation temperature of the nanocomposite films was elevated slightly compared to pristine PVA film. The glass transition temperature, melting temperature, and crystallinity of the PVA also varied slightly after the incorporation of the CNC-g-PAM. At both 0% and 50% RH, the nanocomposite films showed an obvious increase of elastic modulus, no apparent change of breaking strength and a drastic reduction of elongation at break with increasing CNC-g-PAM content.  相似文献   

6.
ABSTRACT

A low carbon high Mn, Ti microalloyed dual phase TWIP steel has been processed through cold rolling and annealing. X-ray diffraction reveals the maximum austenite (≈92%) in HRACST sample whereas, the 50CD sample shows 29% ferrite. The microstructure of HRAC and HRACST samples reveal austenite grains with annealing twins and deformation induced ferrite (DIF). The higher amount of DIF along with deformation twins form during cold deformation. Annealing at 500°C shows recovery, whereas at 700°C shows partial recrystallisation and at 900°C reveals almost full recrystallisation. TEM microstructures of the 900°C for 30?min samples reveal annealing twins with TiC particle. Strong Brass {110}<112> and Goss{110}<001> texture components are observed in HRAC, HRACST and 50CD samples. Goss Twin (GT) {113}<332> and Copper Twin (Cu-T) {552}<115> components are observed in 50CD sample. Addition of Ti results in an average grain size of 20?μm. Maximum YS (1176?MPa) and UTS (1283?MPa) values with the lowest ductility of 11% have been obtained for the 50CD sample which is related to the formation of extensive deformation twin and a higher fraction of DIF. 700°C-30?min and 700°C-60?min samples show an increase in ductility (23% and 34%, respectively) with a marginal decrease in tensile strength (1054?MPa). Annealing at 900°C shows ductility restoration up to 60% with higher tensile strength compared to HRACST sample. Ductile fracture of HRAC and HRACST samples transform to brittle fracture in the 50CD sample. Annealing at 900°C for 30?min shows ductile fracture with some (Fe, Mn)S and TiC particles.  相似文献   

7.
The boron-containing o-cresol-formaldehyde resin (BoCFR) and octa(aminophenyl) polyhedral oligomeric silsesquioxane (OAP-POSS) were synthesized, and the BoCFR/OAP-POSS nanocomposite prepared via an in-situ method. The curing process of the resin was characterized by Fourier transform infrared (FTIR). The thermal properties and dynamic mechanical properties of the nanocomposites were investigated. The results show that the maximal mechanical loss temperature (Tp) increased with increasing OAP-POSS content. When the content of OAP-POSS was 10 wt% the Tp was over 200°C, 27°C higher than the pure BoCFR. The BoCFR/OAP-POSS nanocomposite had better thermal stablitity than the pure BoCFR. The residual weight of the o-cresol-formaldehyde resin was only 6.13 wt% at 600°C. But the residual weight of the pure BoCFR was 55.73 wt% at 600°C, and the residual weights of the BoCFR nanocomposites were all higher than pure BoCFR. The residual weight of the BoCFR nanocomposite was 63.2 wt% at 600°C and 21.83 wt% at 900°C when the OAP-POSS content was 10 wt%. The weight loss of BoCFR/OAP-POSS nanocomposite can be divided primarily into two temperature stages, from 430°C to 550°C and from 550°C to 900°C. The main thermal degradation reaction follows first order kinetics.  相似文献   

8.
In this paper we report the fabrication, properties and degradation studies of banana fibers–reinforced thermoplastic polymers. In order to impart hydrophobicity to the fibers and also to concomitantly increase interfacial bond strength, which is a critical factor for obtaining better mechanical properties of composites, banana fibers were treated with sodium hydroxide (5% and 10% for 4 h), sebacoyl chloride (SC) (0.5 g, 4 h), or toluene diisocyanate (TDl) (1.5 mL, 4 h). Mechanical properties of banana fibers treated with TDl were not affected to any significant extent, but there was an increase in tensile strength of fibers treated with sodium hydroxide (NaOH). Deterioration in mechanical properties was observed upon SC treatment. In thermograssimetre analogue (TGA) studies fibers showed initial mass loss (6.5%–9.5%) in the 50–150°C temperature region. Major weight loss occurred above 200°C. Scanning electron microscope (SEM) studies revealed an increase in surface roughness after alkali treatment. High density polyethylene (HDPE) modified by blending with poly (ε‐caprolactone) (80:20 w/w) was used as a thermoplastic matrix. Composites were fabricated by using 1 cm long banana fibers; the weight fraction of fibers was varied from 0.05–0.13. An increase in weight fraction of fibers resulted in an increase in tensile strength and modulus and decrease in elongation at break. Thin sheets and dumbbells were used for enzymatic and chemical hydrolysis degradation tests. The degradation of the material was monitored by weight change and loss of mechanical properties. The enzymatic degradation in (PCL) presence of Pseudomonas cepacia lipase (PCL) gave appreciable weight loss in PCL and blended materials.  相似文献   

9.
Low-density polyethylene (LDPE) was chemically cross-linked with various amounts of dicumyl peroxide (DCP). The cross-link density, determined by Flory–Rehner theory, showed an increase with increasing DCP. The gel content, densities of cross-linked LDPE, thermal stability, crystallization, melting behavior, and tensile properties were studied. The results showed a new finding about the change of weight loss after cross-linking; with increase in temperature, the weight loss showed an increase below the temperature of about 450°C and then showed a decrease at temperatures from about 450°C to 500°C after being cross-linked. The crystallinity, melting point, crystallization temperature, and elongation at break decreased with the increase in DCP. However, the maximum tensile stress increased with the increase in DCP, and the cross-linked samples showed a rubber-like behavior with no flow.  相似文献   

10.
通过研磨、涂浆和700 ℃ 烧结3 h的方法, 得到了一系列Co3O4掺杂的SnO2纳米颗粒厚膜. 发现在300 ℃ 的工作温度下复合膜对乙醇和丙酮表现了很好的气敏性质, 尤其是在摩尔比Co/Sn为5%时效果达到最好. 对1000 ppm的乙醇和丙酮的灵敏度分别为301和200,为没有Co掺杂时的SnO2时的7倍和5倍.同时,Co3O4的掺杂没有使得对H2的灵敏度有很大的提高,即提高了乙醇和丙酮对氢气的选择性.最后讨论了提高气敏性能的机制.  相似文献   

11.
A blend/clay nanocomposites of 50/50 (wt%) NR/SBR was prepared via mixing the latex of a 50/50 NR/SBR blend with an aqueous clay dispersion and co‐coagulating the mixture. The structure of the nanocomposite was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Nanocomposites containing less than 10 phr clay showed a fully exfoliated structure. After increasing the clay content to 10 phr, both nonexfoliated (stacked layers) and exfoliated structures were observed in the nanocomposites. The results of mechanical tests showed that the nanocomposites presented better mechanical properties than clay‐free NR/SBR blend vulcanizate. Furthermore, tensile strength, tensile strain at break, and hardness (shore A) increased with increasing clay content, up to 6 phr, and then remained almost constant.  相似文献   

12.
In this paper, the damage monitor and life prediction of carbon fiber-reinforced ceramic-matrix composites (C/SiC CMCs) have been investigated using the hysteresis dissipated energy-based damage parameter. The evolution of the interface shear stress, hysteresis dissipated energy, hysteresis dissipated energy-based damage parameter and the broken fibers fraction vs. cycle number, the fatigue life S?N curves of unidirectional, cross-ply and 2.5D C/SiC composites at room temperature and 800 °C in air atmosphere have been analyzed. For unidirectional C/SiC, the hysteresis dissipated energy and hysteresis dissipated energy-based damage parameter first increase and then decrease with cycle number, and the fatigue limit stress decreases from 88% tensile strength at room temperature to 20% of the tensile strength at 800 °C in air atmosphere; for cross-ply C/SiC, the hysteresis dissipated energy and hysteresis dissipated energy-based damage parameter decrease with increasing applied cycles, and the fatigue limit stress decreases from 85% tensile strength at room temperature to 22% tensile strength at 800 °C in air; and for 2.5D C/SiC, the hysteresis dissipated energy and hysteresis dissipated energy-based damage parameter increases with cycle number, and the fatigue limit stress decreases from 70% tensile strength at room temperature to 25% tensile strength at 800 °C in air.  相似文献   

13.
Composites of poly(vinyl chloride) (PVC) filled with micron‐ and nanosized calcium carbonate (CaCO3) particles were prepared by solution blending. The influences of particle size and CaCO3 content on the microstructure and mechanical properties of the PVC composites were investigated by means of polarized optical microscopy and mechanical testing. The polarized optical microscope images revealed that nanosized CaCO3 particles were more agglomerated than micron‐sized CaCO3 particles and the amount of agglomerates increased with increasing particle content. PVC/CaCO3‐0.22 composites (PVC nanocomposite filled with 220‐nm‐particle‐sized CaCO3) 5 phr CaCO3 content had the maximum tensile strength. The Young's modulus of all composites increased with increasing particle content. The energy at break of all composites showed a decreasing trend as a function of CaCO3 content and varied with particle size.  相似文献   

14.
Injection molded specimens of a poly(4-methylpentene) (TPX) were annealed at temperatures between 140 and 220°C for times up to 500 min in air, and the annealed TPX specimens were characterized by the differential scanning calorimeter, UV–visible spectrometry, FT-IR, and X-ray diffraction. The annealing of the TPX specimens at 140–180°C for 50 min showed little effect on their thermal properties. However, the thermal properties were significantly affected by annealing at 200–220°C, and the change was dependent on the annealing time. Besides the annealing effect, the thermal properties were also affected by oxidative degradation. Severe oxidative degradation can destroy the crystalline structure and thus decreases the crystallinity. The oxidative degradation phenomenon of the TPX specimens during annealing can be simulated by isothermal scanning of the weight loss in air by thermal gravimetric analysis.  相似文献   

15.
Epoxy‐clay nanocomposites were synthesized to examine the effects of adding different contents of nanoclays on the physical, mechanical, and thermal properties of the epoxy resin system used in composite pipes manufacturing. Diglycidyl ether of bisphenol‐A (epoxy) with a cycloaliphatic amine heat curing hardner was reinforced by 1–7 wt.% of an organically modified type of montmorillonite. SEM results showed the change in failure of epoxy from brittle to tough mode by addition of nanoclays. X‐ray results indicated some degree of exfoliation by 1 wt.% clay and a decrease in d‐spacing in higher clay loadings after that. The heat‐distortion temperature of epoxy-clay nanocomposites increased from 125.5 to 138.7°C with 3 wt.% organoclay loading. Tensile and flexural modulus increased with increasing clay loading in this type of nanocomposite, but addition of organically modified clay decreased the tensile and flexural strengths and tensile elongation at break. Addition of 7 wt.% nanoclay improved the impact strength by 25.6%.  相似文献   

16.
The polymeric blends of polyvinyl chloride (PVC) and polyethylene terephthalate (PET) with equal composition by weight have been irradiated with 50 MeV Li3+ ions at different fluences. The AC electrical properties of polymeric blends were measured in the frequency range 0.05–100 kHz, and at temperature range 40–150 °C using LCR meter. There is an exponential increase in conductivity with log of frequency and effect is significant at higher fluences. The value of tan δ and dielectric constant are observed to change appreciably due to irradiation. The loss factor (tan δ) versus frequency plot suggests that the capacitors of polymeric blend of PVC and PET may be useful below 10 kHz. No change in dielectric constant was observed over a wide temperature range up to 150 °C. Thermal stability was studied by thermogravimetric analysis. Thermal analysis revealed that chain scission is the dominant phenomena in the polymeric blends resulting in the reduction of its thermal stability. It appears from differential scanning calorimetry studies that the melting temperature decreases as fluence increases. FTIR spectra measurements also revealed that the material suffered severe degradation through bond breaking beyond the fluence of 2.3×1013 ions/cm2.  相似文献   

17.
The effect of four types of silane coupling agents on the mechanical and thermal properties of silicone rubber and ethylene–propylene–diene monomer (M-class) rubber (EPDM) blends is studied, namely, isobutyltriethoxysilane (BUS), acryloxypropyltriethoxysilane (ACS), aminopropyltriethoxysilane (AMS), and vinyltriethoxysilane (VIS). ACS and VIS increase the crosslink density of the blends, which results in higher tensile strength, modulus, and thermal stability, but lower elongation at break compared with the other silanes. However, the blend containing BUS shows highest tanδ in the temperature range of 45°C to 200°C. Thermogravimetric analysis shows two steps of degradation for all the samples, but little difference with the varied silanes.  相似文献   

18.
Graphene oxide (GO) and reduced graphene oxide (CRGO), as a graphene derivatives, possess unique properties and a high aspect ratio, indicating great potential in nanocomposite fields. The present work reports the fabrication of the nanocomposite films by a simple and environmentally friendly process using aqueous solution and optimized time sonication for better exfoliation of the graphene sheets within Poly(Vinyl alcohol) (PVA) as matrix. The films were characterized using high-resolution TEM (HRTEM), X-ray diffraction (XRD), Microtensile testing, Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA). The TEM images revealed a successfully exfoliation of the GO/CRGO nanosheets. XRD combined with TGA and DSC measurements showed an improvement in the thermal stability and tunable thermal properties. In addition, the Young's modulus and tensile yield strength of the composite films containing 1 wt% GO were obtained to be 4.92 GPa and 66 MPa respectively. These excellent reinforcement effects were achieved by the strong interaction between the components.  相似文献   

19.
The effects of processing variables on the solid state properties of rigid PVC were studied by evaluating dynamic mechanical and tensile properties for thin film specimens of two different resins. The dynamic measurements were performed over the temperature range ?1]60 to 85°C, encompassing both the low temperature β transition and above ambient a transition (Tg). Engineering tensile strengths and energies to fracture were obtained at ambient conditions for several rates of elongation. Test specimens were prepared by solvent casting and compression molding techniques and subsequently were subjected to various thermal-mechanical histories. The results obtained were similar for both types of specimens and are described below. The various thermal histories considered include: (1) quick quenching from 225°C (samples referred to as “untreated”); (2) very slow (equilibrium) cooling after annealing at Tg; (3) quick quenching from Tg. In addition, the effects of frozen stresses were examined by systematically varying the stresses imposed on samples during the cooling processes 2 and 3. Increasing the load level imposed on specimens during equilibrium cooling resulted in enhancements of the β transition loss dispersion and tensile yield strength. Changes in loading during process 3, however, had little effect on the cooled specimens. But process 3 does alter the relaxation spectrum below Tg so that additional molecular relaxation is induced between Tβ and Tα as much as 45°C below the a transition. The anomalous tan δ dispersions thus produced are accompanied by diminished tensile yield strengths and greatly increased energies to fracture. The most extreme case was encountered for the “untreated” specimens which were rapidly quenched from 225°C. The loss tangent data indicate remarkable differences in the region between Tβ and Tα. When comparing the dynamic mechanical data with the fracture energy results for the same samples we note that increases in the intensity of the T < Tg anomalous dispersion correlate with increasing energies to fracture. On the other hand, the β transition intensity does not directly correlate. One molecular model which is consistent with these observations assumes that elongation induces a dilation of the polymer. Since most polymers possess Poisson ratios less than 0.5, the dilation will create extra internal volume (including free volume) in the polymer network. The increase in internal volume as elongation proceeds has the net effect of shifting the conditions of testing toward higher temperatures on a molecular relaxation scale permitting a higher level of molecular mobility at ambient conditions. As a sample continues to elongate one of two consequences is encountered: the imposed deformation cannot be accommodated by the available molecular mobility and the specimen fractures; or the deformation results in dilation to the extent that the response properties are shifted into a region of the relaxation spectrum where molecular mobility is sufficient for the specimen to accommodate the imposed deformation and yielding occurs. Yielding is expected if the effective temperature shifts as far as Tg before the sample fractures. In a case where there are additional molecular relaxation possibilities prior to the a transition, such as those in the anomalous dispersion region between Tβ and Tα, sufficient dilation for yielding will be encountered before the normal Tg is reached. The anomalous T < Tg relaxation process thus tends to promote increased elongation and higher energies to fracture in PVC.  相似文献   

20.
This study employs a wire-mesh reactor (WMR) to understand the primary release and transformation of inorganic and organic sodium during fast pyrolysis of various sodium-loaded lignin samples at 300–800 °C. Due to the minimization of volatile-char interactions in WMR, the overall sodium release during lignin pyrolysis is relatively low, i.e., ∼9–11% and ∼7–14% for the inorganic and inorganic sodium loaded lignin, respectively. The presence of the inorganic sodium in the condensed volatiles (so-called oil) clearly indicates the important role of thermal ejection in the release of the inorganic sodium, since sodium salts are unlikely to evaporate under current conditions. While the release of the organic sodium into oil can be due to both thermal ejection of aerosols and evaporation of low carboxylates. Despite the low sodium release, significant transformation of the inorganic and organic sodium can take place during lignin pyrolysis. For the inorganic sodium loaded lignin, the inorganic sodium decreases continuously from ∼67% at 300 °C to ∼42% at 800 °C, accompanied by a steady increase in the organic sodium (i.e., the ion-exchangeable sodium) from ∼17% at 300 °C to ∼37% at 800 °C. While for the organic sodium loaded lignin, its transformation into the inorganic sodium is faster at higher temperatures, leading to a large increase in the inorganic sodium (i.e., carbonates) from ∼9% at 300 °C to ∼48% at 800 °C, as well as a reduction in the organic sodium from ∼79% at 300 °C to ∼28% at 800 °C. The data generated in this study will be important to understand the catalytic mechanism of sodium during thermochemical processing of alkali lignin for the production of bioenergy and biofuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号