首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li(3)V(2)(PO(4))(3)/graphene nanocomposites have been firstly formed on reduced graphene sheets as cathode material for lithium batteries. The nanocomposites synthesized by the sol-gel process exhibit excellent high-rate and cycling stability performance, owing to the nanoparticles connected with a current collector through the conducting graphene network.  相似文献   

2.
The electrochemical performance of Li3V2(PO4)3/C was investigated at various low temperatures in the electrolyte 1.0 mol dm−3 LiPF6/ethyl carbonate (EC)+diethyl carbonate (DEC)+dimethyl carbonate (DMC) (volume ratio 1:1:1). The stable specific discharge capacity is 125.4, 122.6, 119.3, 116.6, 111.4, and 105.7 mAh g−1 at 26, 10, 0, −10, −20, and −30 °C, respectively, in the voltage range of 2.3–4.5 V at 0.2 C rate. When the temperature decreases from −30 to −40 °C, there is a rapid decline in the capacity from 105.7 to 69.5 mAh g−1, implying that there is a nonlinear relationship between the performance and temperature. With temperature decreasing, R ct (corresponding to charge transfer resistance) increases rapidly, D (the lithium ion diffusion coefficients) decreases sharply, and the performance of electrolyte degenerates obviously, illustrating that the low-temperature electrochemical performance of Li3V2(PO4)3/C is mainly limited by R ct, D Li, and electrolyte.  相似文献   

3.
A convenient method named wet coordination is used to prepare the sample or carbon-coated Li3V2(PO4)3 in the furnace with a flowing argon atmosphere at 600 °C for 1 h. The sample is characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and energy dispersive analysis of X-rays (EDAX). Galvanostatic charge–discharge between 3.3 and 4.3 V (vs. Li/Li+) shows that the sample exhibits a high discharge capacity of 128 mAh g?1 with a good reversible performance under a current density of 95 mA g?1. It suggests that carbon-coated Li3V2(PO4)3 with good electrochemical performance can be obtained via this method, which is suitable for large-scale production.  相似文献   

4.
Mg^2+掺杂对锂离子正极材料Li3V2(PO4)3的影响   总被引:4,自引:0,他引:4  
随着市场对锂离子电池(LIB)需求的日趋增长,对电极活性物质的要求也在朝着高能量密度、低成本、安全稳定、环境友好的方向努力,其中正极材料相对负极材料的发展较为缓慢,成为制约LIB发展的瓶颈。NASICON结构的Li3V2(PO4)3属于单斜晶系,相对金属锂具有很高的电势,理论容量高达19  相似文献   

5.
Na-doped Li3V2(PO4)3/C (LVP/C) cathode materials are prepared by a sol–gel method. X-ray diffraction results show that the Na ion has been well doped into the crystal structure of LVP/C and does not disturb the extraction–insertion behavior of lithium ion seriously. The initial discharge capacity of the Na-doped LVP/C is 112.2?mA?h g?1 at 5?C, and the capacity retention reaches 98.3?% over 80 cycles. Cyclic voltammetry and electrochemical impedance spectra indicate that the reversibility of electrochemical redox reaction and the charge-transfer resistance of LVP/C cathode material have been significantly improved by Na doping. The improved performances can be attributed to the more convenient route for lithium ion diffusion and the lower activation energy of the extraction–insertion of lithium ion due to the weakness of Li-O bond.  相似文献   

6.
Duan  He  Wang  Zhen  He  Bin  Zhang  Jun  Yao  Heng  Zhao  Yanming  Fan  Qinghua  Kuang  Quan  Dong  Youzhong 《Journal of Solid State Electrochemistry》2021,25(3):983-991
Journal of Solid State Electrochemistry - Attributed to the realization of the multielectron transfers, with a stable 3D framework, Li9V3 (P2O7)3(PO4)2 is considered an excellent cathode material,...  相似文献   

7.
The carbon-coated monoclinic Li3V2(PO4)3 (LVP/C) cathode materials can be synthesized by one-step heat treatment from a sucrose-containing precursor. Properties of the prepared composite material were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), pore size distribution and specific surface area analyzer, optical particle size analyzer and electrochemical methods. X-ray diffraction results show that LVP sample is monoclinic structure. The sample presents initial discharge capacity of 127.2 mA h/g (at 0.2 C rate), and exhibits better cycling stability (115.1 mA h/g at 30th cycle at 0.2 C rate) and better rate capability (83.1 mA h/g at 50th cycle under 6 C rate) in the voltage range of 3.0–4.3 V. In the voltage range of 3.0–4.8 V, it exhibits a initial discharge capacity of 169.1 mA h/g and good cycling stability (104.9 mA h/g at 20th cycle at 0.5 C rate).  相似文献   

8.
As a kind of lithium-ion battery cathode material, monoclinic lithium vanadium phosphate/carbon Li3V2(PO4)3/C was synthesized by adopting phenolic resin as carbon source, both for reducing agent and coating material. The crystal structure and morphology of the samples were characterized through X-ray diffraction (XRD) and scanning electron microscope (SEM). Galvanostatic charge-discharging experiments and electrochemical impedance spectrum (EIS) were utilized to determine the electrochemical insertion properties of the samples. XRD data revealed that phenolic resin does not change the crystal structure of Li3V2(PO4)3/C. Furthermore, the morphology of grains and the electronic conductivity of Li3V2(PO4)3/C were improved. Galvanostatic charge-discharging and EIS results showed that the optimal electrochemical properties and the minimum charge-transfer resistance of Li3V2(PO4)3/C can be reached when added by 5 wt.% of redundant carbon (except the carbon needed to reduce V5+ to V3+). The initial discharge capacity is 128.4 mAh g?1 at 0.2 C rate and 101.2 mAh g?1 at 5 C in the voltage range of 3.0~4.3 V.  相似文献   

9.
Yao  Heng  Chen  Da  Zhang  Jun  Duan  He  Chen  Ming  Zhou  Zhiyong  Zhao  Yanming  Kuang  Quan  Fan  Qinghua  Dong  Youzhong 《Journal of Solid State Electrochemistry》2021,25(8-9):2267-2277
Journal of Solid State Electrochemistry - Considering the poor electronic conductivity of the pure Li9V3(P2O7)3(PO4)2, we have successfully synthesized a series of Li9?xMgxV3(P2O7)3(PO4)2...  相似文献   

10.
Li2FeSiO4 cathode materials have been prepared by sol-gel method. The effects of carbon sources on the structural, morphological and electrochemical behaviors of Li2FeSiO4 were investigated. The scanning electronic microscope (SEM) and X-ray diffraction powder analysis (XRD) indicate that the obtained samples using different carbon sources possess some difference in the morphology and in the particle size. The sample using the mixture of citric acid and oxalic acid as carbon source has a maximum discharge capacity of 118 mA h g?1 at 0.1 C between 1.8 and 4.5 V. The resulting cyclic voltammograms and electrochemical impedance spectra suggest that the sample using mixed acid as carbon source has smaller polarization and smaller charge transfer impedance.  相似文献   

11.
Composite Li3V2(PO4)3/C cathode material can be synthesized by spray-drying and carbothermal method. The monoclinic-phase Li3V2(PO4)3/C was prepared with the process of double spray drying at 260 °C and subsequent heat treatment at 750 °C for 12 h. The results indicate that the Li3V2(PO4)3/C presents large reversible discharge capacity of 121.9 mA h g−1 and charge capacity of 131.8 mA h g−1 at the current density of C/5, good rate capability with 61.1 mA h g−1 at 20C, and excellent capacity retention rate close to 100% at various current densities in the region of 3.0–4.3 V.  相似文献   

12.
Na3V2(PO4)3 is a very prospective sodium-ion batteries (SIBs) electrode material owing to its NASICON structure and high reversible capacity. Conversely, on account of its intrinsic poor electronic conductivity, Na3V2(PO4)3 electrode materials confront with some significant limitations like poor cycle and rate performance which inhibit their practical applications in the energy fields. Herein, a simple two-step method has been implemented for the successful preparation of carbon-coated Na3V2(PO4)3 materials. As synthesized sample shows a remarkable electrochemical performance of 124.1 mAh/g at 0.1 C (1 C = 117.6 mA/g), retaining 78.5 mAh/g under a high rate of 200 C and a long cycle-performance (retaining 80.7 mAh/g even after 10000 cycles at 20 C), outperforming the most advanced cathode materials as reported in literatures.  相似文献   

13.
The effect of Al2O3 -coating on Li3V2(PO4)3/C cathode material for lithium-ion batteries has been investigated. The crystalline structure and morphology of the synthesized powders have been characterized by XRD, SEM, and HRTEM, and their electrochemical performances are evaluated by CV, EIS, and galvanostatic charge/discharge tests. It is found that Al2O3 -coating modification stabilizes the structure of the cathode material, decreases the polarization of electrode and suppresses the rise of the surface film resistance. Electrochemical tests indicate that cycling performance and rate capability of Al2O3-coated Li3V2(PO4)3/C are enhanced, especially at high rates. The Al2O3-coated material delivers discharge capacity of 123.03 mAh g?1 at 4 C rate, and the capacity retention of 94.15 % is obtained after 5 cycles. The results indicate that Al2O3 -coating should be an effective way to improve the comprehensive properties of the cathode materials for lithium-ion batteries.  相似文献   

14.
A monoclinic lithium vanadium phosphate (Li3V2(PO4)3) and carbon composite thin film (LVP/C) is prepared via electrostatic spray deposition. The film is studied with X-ray diffraction, scanning and transmission electron microscopy and galvanostatic cell cycling. The LVP/C film is composed of carbon-coated Li3V2(PO4)3 nanoparticles (50 nm) that are well distributed in a carbon matrix. In the voltage range of 3.0–4.3 V, it exhibits a reversible capacity of 118 mA h g?1 and good capacity retention at the current rate of 1 C, while delivers 80 mA h g?1 at 24 C. These results suggest a practical strategy to develop new cathode materials for high power lithium-ion batteries.  相似文献   

15.
采用溶胶凝胶法合成前驱体,再在空气气氛中分别于400℃、500℃和600℃下焙烧,得到锂离子电池正极材料(1-2x)MgxMnPO4/C(0≤x≤0.1);利用X射线衍射分析、环境扫描电镜分析、恒流充放电、阻抗测试等分析了产物的结构、形貌和电化学性能.结果表明,合成的(1-2x)MgxMnPO4/C颗粒呈球形,具有橄榄...  相似文献   

16.
Carbon coated and carbon free Li3V2(PO4)3 cathode materials were prepared by carbothermal reduction and H2 reduction methods, respectively. The carbon free material had a grain size about 1 μm whereas the carbon coated material was less than 100 nm. The surface carbon layer enhanced the electronic conductivity of Li3V2(PO4)3 by five orders of magnitude. In addition, the surface carbon layer also prevented the formation of SEI film, decreased the charge transfer resistance and increased the chemical diffusion coefficient of Li+ ions. All of these advantages improved the electrochemical performance of Li3V2(PO4)3. As most of intercalation materials, the low temperature performance of Li3V2(PO4)3 was poorer than that at room temperature. This was attributed to the electrochemical sluggish kinetics which caused higher charge transfer resistance and smaller chemical diffusion coefficient. The carbon coating technique was effective to eliminate these sluggish kinetics, and then improved the low temperature performance of Li3V2(PO4)3.  相似文献   

17.
Journal of Solid State Electrochemistry - The Jahn–Teller effect and severe side reactions with liquid electrolyte have been considered as the main obstacles to the further application of...  相似文献   

18.
Various structures and morphologies of Li3V2(PO4)3 precursors are synthesized by a novel ionothermal method using three kinds of imidazolium-based ionic liquids as both reaction mediums and structure-directing agents at ambient pressure. Nanostructured Li3V2(PO4)3/C cathode materials can be successfully prepared by a subsequent short calcination process. The structures, morphologies, and electrochemical properties are characterized by X-ray diffractometry, thermogravimetry, scanning and transmission electron microscopy, charge–discharge test, cyclic voltammetry, and electrochemical impedance spectroscopy. It shows that three kinds of materials synthesized present different morphologies and particle sizes. The result can be due to imidazolium-based ionic liquids, which combined with different anions play important role in forming the size and morphology of Li3V2(PO4)3 material. These materials present excellent performance with high rate capacity and cycle stability. Especially, the Li3V2(PO4)3/C material prepared in 1-ethyl-3-methylimadozolium trifluoromethanesulfonate ([emim][OTf]) can deliver discharge capacities of 127.4, 118.9, 105.5, and 92.8 mAh?g?1 in the voltage range of 3.0–4.3 V at charge–discharge rate of 0.1, 1, 10, and 20 C after 50 cycles, respectively. The excellent rate performance can be attributed to the uniform nanostructure, which can make the lithium-ion diffusion and electron transfer more easily across the Li3V2(PO4)3/electrolyte interfaces.  相似文献   

19.
《Solid State Sciences》2012,14(7):864-869
A series of Li3V2(PO4)3/C cathode materials with different morphologies were successfully prepared by controlling temperatures using maleic acid as carbon source via a simple sol–gel reaction method. The Li3V2(PO4)3/C nanorods synthesized at 700 °C with diameters of about 30–50 nm and lengths of about 800 nm show the highest initial discharge capacity of 179.8 and 154.6 mA h g−1 between 3.0 and 4.8 V at 0.1 and 0.5 C, respectively. Even at a discharge rate of 0.5 C over 50 cycles, the products still can deliver a discharge capacity of 140.2 mA h g−1 in the potential region of 3.0–4.8 V. The excellent electrochemical performance can be attributed to one-dimensional nanorod structure and uniform particle size distribution. All these results indicate that the resulting Li3V2(PO4)3/C is a very strong candidate to be a cathode in a next-generation Li-ion battery for electric-vehicle applications.  相似文献   

20.
《中国化学快报》2023,34(6):107978
Sodium-ion batteries (SIBs) have received significant attention in large-scale energy storage due to their low cost and abundant resources. To obtain high-performance SIBs, many intensive studies about electrode materials have been carried out, especially the cathode material. As various types of cathode material for SIBs, a 3D open framework structural Na3V2(PO4)2F3 (NVPF) with Na superionic conductor (NASICON) structure is a promising cathode material owing to its high operating potential and high energy density. However, its electrochemical properties are severely limited by the poor electronic conductivity due to the insulated [PO4] tetrahedral unit. In this review, the challenges and strategies for NVPF are presented, and the synthetic strategy for NVPF is also analyzed in detail. Furthermore, recent developments of modification research to enhance their electrochemical performance are discussed, including designing the crystal structure, adjusting the electrode structure, and optimizing the electrolyte components. Finally, further research and application for future development of NVPF are prospected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号