首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不同形貌ZnO纳米粒子的超声化学法制备与表征   总被引:10,自引:0,他引:10  
One-dimensional ZnO nanorods and shuttle-like ZnO nanoparticles have been successfully achieved by ultrasonic irradiation of Zn (CH3COO)2 aqueous solution and Zn-NH3 complexcs solution. The obtained ZnO nanoparticles have been characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and selected area electronic diffraction (SAED). And the formative mechanism of the prepared different morphological ZnO nanoparticles is also discussed under ultrasonic irradiation.  相似文献   

2.
In this work, a high-performance photocatalyst of ZnO/graphene-oxide (ZnO/GO) nanocomposite was synthesized via a facile chemical deposition route and used for the photodegradation of organic dye from water under visible light. The nanocomposite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller N(2) adsorption-desorption analysis, and UV-Vis diffusion reflectance spectroscopy. The ZnO/GO nanocomposite consisting of flower-like ZnO nanoparticles anchored on graphene-oxide sheets has a high surface area and hierarchical porosity, which is benefit to the adsorption and mass transfer of dye and oxygen species. For the photodegradation of organic dyes under visible light, ZnO/GO nanocomposite exhibited remarkably enhanced photocatalytic efficiency than graphene-oxide sheets and flower-like ZnO particles. Moreover, the photocatalytic efficiency of ZnO/GO nanocomposite could be further improved by annealing the product in N(2) atmosphere. The outstanding photocatalytic performance was ascribed to the efficient photosensitized electron injection and repressed charge carriers recombination in the composite with GO as electron collector and transporter, thus leading to continuous generation of reactive oxygen species for the degradation of methylene blue.  相似文献   

3.
Novel ZnO/N‐doped helical carbon nanotubes (ZnO/N‐HCNTs) composites were successfully synthesized via a facile chemical precipitation approach at room temperature. The sample was well characterized by X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy (EDS), transmission electron microscopy (TEM) and ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS). The photocatalytic activity was evaluated in the degradation of methylene blue (MB) aqueous solution under UV light irradiation. It is found that ZnO nanoparticles were highly and uniformly anchored on the surface and inner tubes of the N‐HCNTs with size of about 5 nm, and significantly enhanced the photocatalytic activity compared to pure ZnO. The enhanced photocatalytic activity of ZnO/N‐HCNTs composites can be ascribed to the integrative synergistic effect of effective interfacial hybridization between N‐HCNTs and ZnO nanoparticles and the prolonged lifetime of photogenerated electron–hole pairs. Moreover, the ZnO/N‐HCNTs could be easily recycled without any obvious decrease in photocatalytic activity and could be promote their application in the area of environmental remediation.  相似文献   

4.
采用氨浸法制备了不同V2O5含量的纳米V2O5/ZnO光催化剂,并用X射线衍射、比表面积测定、透射电镜、X射线光电子能谱和漫反射紫外-可见光谱测定了催化剂的晶型、比表面积、形貌尺寸、表面组成和光谱特征.以壬基酚聚氧乙烯醚(NPE-10)为模型污染物,分别在紫外光和可见光照射下考察了光催化剂的催化活性.结果表明,随着V2O5含量的增加,V2O5/ZnO的粒径逐渐减小,比表面积逐渐增大.与纳米ZnO样品相比,V2O5/ZnO中V2p的结合能减小,而Zn2p和O1s的结合能增大,V2O5/ZnO表面的羟基氧和吸附氧含量增加.n(V)/n(Zn)=2·5%的V2O5/ZnO光催化剂样品的催化活性最高(在紫外光和可见光照射3h后,NPE-10降解率分别约为79%和62%).  相似文献   

5.
In the present investigation novel Polyimide/functionalized ZnO (PI/ZnO) bionanocomposites containing amino acid (Methionine) and benzimidazole pendent groups with different amounts of modified ZnO nanoparticles (ZnO NPs) were successfully prepared through ultrasonic irradiation technique. Due to the high surface energy and tendency for agglomeration, the surface ZnO NPs was modified by a coupling agent as 3- methacryloxypropyl-trimethoxysilane (MPS) to form MPS-ZnO nanoparticles. The ultrasonic irradiation effectively changes the rheology and the glass transition temperature and the crystallinity of the composite polymer. PI/ZnO nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM). TEM analysis showed that the modified ZnO nanoparticles were homogeneously dispersed in polymer matrix. The TGA results of PI/ZnO nanocomposites showed that the thermal stability is obviously improved the presence of MPS-ZnO NPs in comparison with the pure PI and that this increase is higher when the NP content increases. The permeabilities of pure H2, CH4, O2, and N2 gases through prepared membranes were determined at room temperature (25 °C) and 20 bar feed pressure. The membranes having 20% ZnO showed higher values of H2 permeability, and H2/CH4 and H2/N2 ideal selectivities (the ratio of pair gas permeabilities) compared with other membranes. The antibacterial activity of bionanocomposite films was tested against gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Further, it was observed that antibacterial activity of the resulting hybrid biofilms showed somewhat higher for gram-positive bacteria compared to gram-negative bacteria.  相似文献   

6.
Gold nanoparticles of 10–24 and 5–8 nm in size were obtained by chemical citrate reduction and UV photoreduction, respectively, on acid‐treated multiwalled carbon nanotubes (MWCNTs) and on ZnO/MWCNT composites. The shape and size of the deposited Au nanoparticles were found to be dependent upon the synthetic method used. Single‐crystalline, hexagonal gold particles were produced in the case of UV photoreduction on ZnO/MWCNT, whereas spherical Au particles were deposited on MWCNT when the chemical citrate reduction method was used. In the UV photoreduction route, n‐doped ZnO serves as the e? donor, whereas the solvent is the hole trap. All materials were fully characterised by UV/Vis spectroscopy, scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectroscopy, Raman spectroscopy and BET surface analysis. The catalytic activity of the composites was studied for the selective hydrogenation of α,β‐unsaturated carbonyl compound 3,7‐dimethyl‐2,6‐octadienal (citral). The Au/ZnO/MWCNT composite favours the formation of unsaturated alcohols (selectivity=50 % at a citral conversion of 20 %) due to the presence of single‐crystalline, hexagonal gold particles, whereas saturated aldehyde formation is favoured in the case of the Au/MWCNT nanocomposite that contains spherical gold particles.  相似文献   

7.
In this study the formation of approximately spherical assemblies of nanocrystalline primary particles of CdS in a CS(2)-water-ethylenediamine (CWE) microemulsion induced by ultrasonic irradiation is described. CS(2) was employed as the sulfur source for CdS and also as the oil phase in the microemulsion. The particles were studied with X-ray powder diffraction, transmission electron microscopy, UV/Vis absorption spectroscopy, and photoluminescence spectroscopy. A blue shift compared to bulk CdS was observed in absorption and photoluminescence spectra. Copyright 2001 Academic Press.  相似文献   

8.
以表面活性剂十二烷基磺酸钠(SDS)为模板,Zn(NO_3)_2·6H_2O和NaOH为锌源和沉淀剂,通过改进的模板法在温和条件下制得纳米层状ZnO.以离子液体1-烯丙基-3-甲基咪唑氯盐([Amim]Cl)为溶剂,木浆纤维素和纳米层状ZnO为原料,采用溶液共混方法,通过干湿法纺丝制备了ZnO质量分数分别为3%,5%,7%及9%的纤维素/ZnO纳米复合纤维.采用X射线衍射(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)、场发射扫描电子显微镜(SEM)及热重分析(TG)等方法对纳米层状ZnO及纤维素/ZnO复合纤维进行了表征,并探讨了ZnO的加入对复合体系流变性的影响,同时对复合纤维进行了力学和抗菌性能测试.研究结果表明,所制备氧化锌纯度高,且呈现出重复周期为3.58 nm的层状结构,抗菌性能优异.纳米层状ZnO的加入提高了纤维素纤维的热稳定性和机械强度,同时赋予纤维对金黄色葡萄球菌和大肠杆菌的抑菌性.ZnO片层被纤维素链剥离,并均匀分散于纤维素/ZnO复合物中.ZnO的加入增大了纤维素溶液的黏度,当ZnO含量达到5%以上时,在整个频率范围内,弹性模量大于损耗模量,纳米粒子可稳定悬浮.  相似文献   

9.
This paper presents our results on the successful fabrication of HCl‐doped polyaniline (PANI)/ZnO nanocomposites via an electrochemical synthesis route. Different weight percents of ZnO nanoparticles were uniformly dispersed in the PANI matrix. The interaction between the dispersed ZnO nanoparticle and PANI was studied using X‐ray diffraction, ultraviolet–visible absorption spectroscopy, photoluminescence (PL) spectroscopy, X‐ray photoelectron spectroscopy, atomic force microscopy, thermogravimetry, and transmission electron microscopy. It is shown that the doping state of the PANI/ZnO nanocomposite is highly improved as compared to that of PANI. The dispersed PANI/ZnO nanocomposites exhibit enhanced PL behavior and thermal stability.  相似文献   

10.
Stearate@Cu/ZnO nanocomposite particles with molar ratios of ZnO?∶?Cu = 2 and 5 are synthesized by reduction of the metal-organic Cu precursor [Cu{(OCH(CH(3))CH(2)N(CH(3))(2))}(2)] in the presence of stearate@ZnO nanoparticles. In the case of ZnO?∶?Cu = 5, high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) combined with electron-energy-loss-spectroscopy (EELS) as well as attenuated total reflection Fourier transform infrared (ATR-IR) spectroscopy are used to localize the small amount of Cu deposited on the surface of 3-5 nm sized stearate@ZnO particles. For ZnO?∶?Cu = 2, the microstructure of the nanocomposites after catalytic activity testing is characterized by HAADF-STEM techniques. This reveals the construction of large Cu nanoparticles (20-50 nm) decorated by small ZnO nanoparticles (3-5 nm). The catalytic activity of both composites for the synthesis of methanol from syn gas is evaluated.  相似文献   

11.
A simple method was used to synthesize the hybrid nanocomposites consisting of the functionalized multiwalled carbon nanotube composites (MWCNTs) with the polyaniline incorporated silver nanoparticles (a-MWCNT/PANI-Ag) through an emulsion polymerization at room temperature in order to enhance the electrical conductivity of polyaniline. The electrical conductivity of the composite with the incorporated Ag nanoparticles was 5% higher than the same weight percent for the composite without Ag nanoparticles, and the thermal stability was dramatically increased from 54% for the composite (a-MWCNT/PANI) to 69% through the incorporation of the Ag nanoparticles at 830°C. Additionally, the advantages of the Ag nanoparticles, including the improved electrical and thermal properties without damage to the polyaniline structure, were confirmed using FTIR and Raman spectroscopy.  相似文献   

12.
The g-C(3)N(4)-ZnO composite photocatalysts with various weight percents of ZnO were synthsized by a simple calcination process. The photocatalysts were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), UV-vis diffuse reflection spectroscopy (UV-vis), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The PXRD and HR-TEM results show that the composite materials consist of hexagonal wurzite phase ZnO and g-C(3)N(4). The solid-state UV-vis diffuse reflection spectra show that the absorption edge of the composite materials shifts toward the lower energy region and to longer wavelengths in comparison with pure ZnO and g-C(3)N(4). Remarkably, the photocatalytic activity of g-C(3)N(4)-ZnO composites has been demonstrated, via photodegradation of Methyl Orange (MO) and p-nitrophenol experiments. The photocatalytic activity of g-C(3)N(4)-ZnO for photodegradation of Methyl Orange and p-nitrophenol under visible light irradiation was increased by over 3 and 6 times, respectively, to be much higher than that of single-phase g-C(3)N(4), clearly demonstrating a synergistic effect between ZnO and g-C(3)N(4). The concentrations of Zn(2+) in g-C(3)N(4)-ZnO system after a photocatalytic reaction at various reaction times were found to be much lower than those for a ZnO system under the same reaction conditions, indicating that the g-C(3)N(4)-ZnO composite possesses excellent long-term stability for a photocatalytic reaction in aqueous solutions. Furthermore, a synergistic photocatalysis mechanism between ZnO and g-C(3)N(4) was proposed based on the photodegradation results. Such obviously improved performance of g-C(3)N(4)-ZnO can be ascribed mainly to the enhancement of electron-hole separations at the interface of ZnO and g-C(3)N(4).  相似文献   

13.
This work demonstrated a facile route to the synthesis of polyaniline (PANI) nanofibers by polymerization of aniline using chloroaurate acid (HAuCl(4)) as the oxidant. The reduction of AuCl(4)(-) is accompanied by oxidative polymerization of aniline, leading to uniform PANI nanofibers with a diameter of 35 +/- 5 nm and aggregated gold nanoparticles which can precipitate from the liquid phase during the reaction. The resultant PANI nanofibers and gold particles were characterized by means of different techniques, such as UV-vis, FTIR spectroscopy, and scanning and transmission electron microscopy methods. It is found that the gold aggregates are capped with polyaniline, and the conductivity of the fibers is around 0.16 S/cm.  相似文献   

14.
二甲四氯钠(MCPA-Na)是一种广泛用于牧场和果园的除草剂,但由于其生物降解性极低,已成为地下水和浅水中的主要污染物.研究发现,半导体可以有效地辅助降解转化危险化学品.ZnO纳米管因其中空结构和较大的比表面积,而在光催化降解有机物方面备受关注.但是,ZnO只能吸收紫外光,如果将其与窄带隙半导体进行复合,可以有效降低带隙,增强其在可见光区域的光吸收,表现出更好的光催化性能.WO3是一种具有稳定物理化学性质及耐光腐蚀窄带隙半导体.采用WO3修饰ZnO纳米管,能扩展ZnO吸收光的范围以及提高ZnO纳米管的耐光腐蚀性能.本文首先通过电化学合成的方法制备了ZnO纳米管,然后按照不同的W/Zn摩尔比将(NH4)6H2W12O40·XH2O滴加在纳米管表面,并在450 ℃下退火2 h制得ZnO-WO3纳米管阵列.研究了不同WO3含量的ZnO-WO3纳米管光催化降解MCPA-Na性能,并且通过X射线光电子能谱(XPS)、傅里叶红外光谱仪(FTIR)、紫外可见光谱(UV-Vis)和光致发光光谱(PL)等手段研究了复合WO3纳米颗粒后ZnO纳米管半导体光催化性能提高的原因.XPS结果表明,W元素在ZnO-WO3纳米管阵列中以W6+的形式存在.FTIR结果表明,复合WO3后的ZnO-WO3复合半导体上比纯ZnO纳米管表面具有更多的OH-基团.由于OH-可以捕获光生空穴,并转化为具有反应活性的●OH自由基,因此复合WO3能在一定程度上提高ZnO纳米管的光催化活性.UV-Vis结果表明,WO3的复合使得光谱发生明显红移,但随着WO3含量的增加,ZnO-WO3的吸光度明显增加.另外,PL结果表明,适当的复合WO3可以抑制光生电子-空穴的复合.这是因为W6+和晶格氧的相互作用产生了较高不饱和键和表面缺陷,而表面缺陷可以作为光生载流子的陷阱,促进了光生电子和空穴的分离,因而光催化性能提高.在模拟太阳光下研究了不同WO3含量的ZnO纳米管对光催化降解MCPA-Na溶液的性能.发现W/Zn摩尔比为3%的ZnO-WO3样品表现出最好的光催化活性,200 min内其降解率为98.5%.与纯ZnO纳米管相比,其光催化循环性能也有所提高.利用Mott-Schottky测试方法并结合UV-vis结果,我们计算得到不同WO3含量的ZnO-WO3复合半导体导带价带位置.由于WO3导带位置和价带位置都比ZnO的更高,WO3上产生的光生电子会向ZnO的导带移动,而ZnO光生空穴向WO3的价带移动,从而促使光生电子和空穴的分离,提高了光催化性能.但是如果WO3复合的量太大,则在ZnO纳米管上分散性不好,反而成为光生空穴和电子复合中心,导致其光催化活性降低.  相似文献   

15.
采用超声波辐射法制备了具有介孔结构的高浓度氮掺杂TiO2纳米晶(N/TiO2).采用N2物理吸附、X射线粉末衍射、X射线光电子能谱、透射电镜、光致发光谱和紫外-可见漫反射光谱等手段对N/TiO2进行了表征.以波长为400~660nm的可见光为光源,以水体污染物邻苯二甲酸二甲酯为降解对象,考察了不同制备方法对N/TiO2光催化性能的影响.结果表明,超声波辐射使氮掺杂浓度提高了2.2倍,该法制备的N/TiO2同时具有较好的介孔结构,表现了更高的光催化降解邻苯二甲酸二甲酯的活性.其活性提高的主要原因是N/TiO2含有更高浓度的氮和对可见光具有更强的吸收能力.  相似文献   

16.
A modified aqueous sol-gel route was developed using ultrasonic power for the silica coating of indium tin oxide (ITO) nanoparticles. In this approach, organosilane with an amino functional group was first used to cover the surface of as-received nanoparticles. Subsequent silica coating was initiated and sustained under power ultrasound irradiation in an aqueous mixture of surface-treated particles and epoxy silane. This process resulted in a thin but homogeneous coverage of silica on the particle surface. Particles coated with a layer of silica show better dispersability in aqueous and organic media compared with the untreated powder. Samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and the zeta potential.  相似文献   

17.
Zinc oxide nanoparticles, with an average size of about 40 nm, were encapsulated by polystyrene using in situ emulsion polymerization in the presence of 3-methacryloxypropyltrimethoxysilane (MPTMS) as a coupling agent and polyoxyethylene nonylphenyl ether (OP-10) as a surfactant. Polymerization mechanism of nanocomposite latex was discussed. Transmission electron microscopy (TEM) proved the presence of ZnO nanoparticle appeared to be monodisperse in nanosize in polymer composite particles. ZnO/PS nanocomposites were characterized by Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results of FT-IR and XPS revealed that the surface of ZnO particle was successfully grafted by PS through the link of the coupling agent between ZnO and polymer. TGA and DSC results indicated an enhancement of thermal stability of composite materials compared with the pure polymer. SEM (scanning electron microscope) images showed a perfect dispersion of the ZnO particles in latex film. In addition, UV-visible absorption measurements demonstrated that the ZnO/PS composite coatings display a perfect performance of absorbing UV light.  相似文献   

18.
Electron transport layers(ETLs)in perovskite solar cells(PSCs)are a key factor to determine the photovoltaic performance.Herein,we demonstrate preparation of Zn O/ZnS core-shell composites through directly synthesizing ZnS on the ZnO nanoparticles in solution.We confirmed the formation of ZnO/ZnS core-shell composites by the uses of X-ray diffraction patterns and the Fourier transform infrared spectroscopy.ZnO/ZnS composites exhibit much homogeneous surface morphology as compared with the bare Zn O as revealed in the scanning electronic microscopy.Moreover,the upper shift of conduction band level upon composition of the Zn O/Zn S film results in a better alignment of energy level,which facilitates cascade charge extraction and thus improves the current density of perovskite solar cell.The shift of conduction band also improves the voltage of the PSCs.The photoluminescence(PL)spectroscopies measured in both steady and transient states were carried out to characterize the charge extraction at the interface between CH_3NH_3PbI_3and the electron transport layers of either ZnO or ZnO/ZnS composite.The ZnO/ZnS composite can more efficiently quench the PL signal of perovskite absorber than bare Zn O resulting in enhanced photocurrent generation in PSCs.  相似文献   

19.
Composite material formed from a mesoporous aluminosilicate, Na-AlMCM-41, with conducting polyaniline (PANI) has been synthesized by an in situ polymerization technique. Studies of aniline adsorption over mesoporous Na-AlMCM-41 synthesized in our laboratory allowed us to find the modes in which aniline interacts with the active sites of Na-AlMCM-41. In order to obtain the best reaction conditions to polymerize aniline onto Na-AlMCM-41, aniline was first polymerized to produce pure PANI. Hence, the oxidative in situ polymerization was carried out by two procedures, differing in the polymerization time and in static or stirring conditions. Studies of infrared spectroscopy and UV-vis spectroscopy indicated that higher polymerization time and static conditions allowed us to obtain mainly polyaniline in emeraldine form on the host. The N(2) isotherm of the polyaniline/Na-AlMCM-41 composite (PANI/MCM) indicated that the shape was similar to that of MCM, but the shift to saturation transition to lower partial pressure shows that the channels are occupied by PANI and they are now narrowed. The thermal properties of PANI, Na-AlMCM-41, and composite were investigated by TGA analyses and we found that the polymer shows higher thermal stability when it is forming the composite. Scanning electron microscopy indicated that PANI is not on the outer surface of the host. Conductivity studies show that PANI/Na-AlMCM-41 exhibits semiconductor behavior at room temperature and its conductivity was 7.0 x 10(-5) S/cm, smaller than that of pure polyaniline. PANI/Na-AlMCM-41 conductivity shows an increase as temperature increases. Magnetic measurements at room temperature confirmed that the composite has paramagnetic behavior; at lower temperatures the composite became diamagnetic.  相似文献   

20.
<正>Porous TiO_2/ZnO composite nanofibers have been successfully prepared by electrospinning technique for the first time.It was generated by calcining TiO_2/ZnCl_2/PVP[PVP:polyvinyl pyrrolidone)]nanofibers,which were electrospun from a mixture solution of TiO_2,ZnCl_2 and PVP.Transmission electron microscopy(TEM) and X-ray diffraction(XRD) analyses were used to identify the morphology of the TiO_2/ZnO nanofibers and a formation of inorganic TiO_2/ZnO fibers.The porous structure of the TiO_2/ZnO fibers was characterized by N_2 adsoption/desorption isotherm.Surface photovoltage spectroscopy(SPS) and photocatalytic activity measurements revealed advance properties of the porous TiO_2/ZnO composite nanofibers and the results were compared with pure TiO_2 nanofibers,pure ZnO nanofibers and TiO_2/ZnO nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号