首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 969 毫秒
1.
Nano-titania doped with noble metals (Au/TiO2, Ag/TiO2, Pd/TiO2) has been synthesized by mild hydrolysis of the mixture of metal salts or complexes and titanium isopropoxide ((iPr-O)4Ti). After thermal decomposition of the obtained precursors, nanomaterials were formed. Morphological characterization of the nanomaterials was provided by scanning electron microscopy (SEM) and stereological analysis, determining the BET specific surface area, and BJH nanoporosity (pore volume, pore size). It has been found that the structure of nanomaterials (size of nanoparticles and agglomerates) depended strongly on the method of the (iPr-O)4Ti hydrolysis. A minor dependence on the kind of solvents and precursors of noble metals was observed. The presence of doping metal nanoparticles was confirmed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). Nanomaterial phases were identified by X-ray diffraction (XRD). According to the XRD patterns, Ag/TiO2 and Pd/TiO2 products with doping metals in their oxidized form contain Ag-Ti and Pd-Ti phases. Peaks of the metal oxides Ag2O and PdO are absent in the XRD patterns. The average size of TiO2 nanoparticles is situated in the region of 20–60 nm, whereas metals are present as about 10–15 nm sized particles and fine nanoparticles.  相似文献   

2.
The properties of supported non‐noble metal particles with a size of less than 1 nm are unknown because their synthesis is a challenge. A strategy has now been created to immobilize ultrafine non‐noble metal particles on supports using metal–organic frameworks (MOFs) as metal precursors. Ni/SiO2 and Co/SiO2 catalysts were synthesized with an average metal particle size of 0.9 nm. The metal nanoparticles were immobilized uniformly on the support with a metal loading of about 20 wt %. Interestingly, the ultrafine non‐noble metal particles exhibited very high activity for liquid‐phase hydrogenation of benzene to cyclohexane even at 80 °C, while Ni/SiO2 with larger Ni particles fabricated by a conventional method was not active under the same conditions.  相似文献   

3.
Small Se nanoparticles with a diameter of ≈20 nm were generated by the reduction of selenium chloride with NaBH4 at ?10 °C. The reaction with Ag at 60 °C yielded stable Ag2Se nanoparticles, which subsequently were transformed into M–Se nanoparticles (M=Cd, Zn, Pb) through cation exchange reactions with corresponding ions. The reaction with Pt formed Pt layers that were evenly coated on the surface of the Se nanoparticles, and the dissolution of the Se cores with hydrazine generated uniform Pt hollow nanoparticles. The reaction with Au generated tiny Au clusters on the Se surface, and eventually formed acorn‐shaped Au–Se nanoparticles through heat treatment. These results indicate that small Se nanoparticles with diameters of ≈20 nm can be used as a versatile platform for the synthesis of metal selenide and metal–selenium hybrid nanoparticles with complex structures.  相似文献   

4.
We describe here a one-step solid-state process for the synthesis of metal three-dimensional (3D) superstructures from a metal-organic framework (MOF). Novel symmetrical coralloid Cu 3D superstructures with surface interspersed with clusters of Cu nanoparticles were successfully synthesized by thermolysis of the [Cu3(btc)2] (btc=benzene-1,3,5-tricarboxylato) MOF in a one-end closed horizontal tube furnace (OCTF). The obtained products were characterized by TGA, FT-IR, XRD, EDX, SEM, TEM, HRTEM and SAED. Different reaction conditions were discussed. Furthermore, the synthesized Cu samples were converted into CuO microstructures by in-situ calcination in the air. In addition, the possible formation mechanism was also proposed. This method is a simple and facile route, which builds a direct linkage between metal-carboxylate MOF crystals and metal nano- or microstructures and also opens a new application field of MOFs.  相似文献   

5.
Morphology‐ and composition‐controlled synthesis of Au–Pd bimetallic particles was realized by a facile ionic liquid assisted route at room temperature. The morphologies of the synthesized particles, such as nanoflake‐constructed spheres with a core–shell structure, nanoparticle‐constructed spheres, and nanoparticle‐constructed dendrites, could be well controlled by the present route. The ionic liquid was found to play a key role in the formation of these interesting particles. Moreover, the composition (Au:Pd) of the particles could be modulated by means of the molar ratio of the metal precursors in the feeding solutions. The Au–Pd bimetallic particles exhibit high electrocatalytic activity toward oxidation of ethanol and formic acid. Furthermore, cyclic voltammetric studies on the as‐prepared Au–Pd bimetallic particles revealed good electroactivity for H2O2, which results in an effective amperometric H2O2 sensor.  相似文献   

6.
溶液体系中的纳米金属粒子形状控制合成*   总被引:14,自引:0,他引:14  
纳米尺度的金属粒子由于量子尺寸效应等原因而表现出不同于宏观金属块体的电学、磁学、光学和热学等性质.纳米金属粒子的性质不仅受到尺寸的影响,还与粒子的形状密切相关.不同形状的纳米金属粒子通常具有不同的表面结构和性质.近年来,纳米金属粒子的形状控制合成正受到越来越多的关注;其中,Ⅷ族和IB族金属的研究已取得一定进展.本文评述了纳米金属粒子的合成以及尺寸和形状控制的方法,分别介绍了铂、钯、镍、金、银、铜以及钴等金属的形状控制合成的近期研究进展.  相似文献   

7.
A highly efficient phase-transfer method was developed to prepare alkylamine-stabilized nanoparticles of several noble metals. This method involved first mixing the metal hydrosols and an ethanol solution of dodecylamine and then extracting the dodecylamine-stabilized metal nanoparticles into toluene. The efficiency of this phase-transfer method was nearly 100%. Alkylamine-stabilized Ru, Pt, and Au nanoparticles 3.45, 4.33, and 7.89 nm in diameter, respectively, could be prepared this way. The self-assembly of dodecylamine-stabilized Pt and Au particles was also detected by transmission electron microscopy (TEM).  相似文献   

8.
A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr2) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300 °C. Syntheses at higher temperatures gave rise to microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.  相似文献   

9.
A novel method of fabrication of silica-based sol-gel films and glasses containing small semiconductor particles was developed. A series of films and glasses with nanoparticles of copper chalcogenides (CuS, Cu2Se, CuInS2) and metal particles (Cu) were fabricated through the chemical transformation of precursors incorporated into a sol-gel derived matrix. The properties of the nanoparticles studied by means of XRD, XPS, TEM and optical spectroscopy are provided both by size effects and the chemical nature of surface states and can be controlled at different steps of chemical treatment.  相似文献   

10.
Core-shell and multilayered nanoparticles based on magnetite core with different metallic spacing and over-layers are prepared in one pot synthesis and characterized. The spacer layers were made from Au, Cu or Ag precursors. The nanoparticles were fabricated by a modified chemical seed based method. The obtained nanoparticles were examined by X-ray diffraction, Energy-dispersive X-ray spectroscopy, Transmission Electron Microscopy, Differential Scanning Calorimetry and Infrared spectroscopy. Magnetic properties of the nanoparticles were tested by Mössbauer spectroscopy and Magnetometry. Magnetization and Mössbauer measurements show that the presence of the metallic layers influences the magnetic state of the particles. XRD and EDX confirm layered structures of nanoparticles. Proposed synthesis allows for fabrication of layered particles with controlled morphology and register properties changes which are related to the nature of each subsequent layer.  相似文献   

11.
The thermal decomposition of acetates of the transition metals Fe, Co, Ni, Mn and Cu in molecular hydrogen has been investigated by means of combined thermogravimetry/mass spectrometry, X-ray diffraction, and transmission as well as scanning electron microscopy. In the context of the reproducible preparation of the parent phases, i.e. the hydrated or anhydrous metal(II) acetates, single crystalline Fe3(CH3COO)6(DMSO)2, a novel DMSO solvate of iron(II) acetate, has been isolated and its crystal structure has been determined by means of X-ray diffraction. For the series of metal(II) acetates it has been found that the course of the thermal degradation in molecular hydrogen, in particular the formation of the gaseous products, strongly depends on the transition metal ion present in the parent compound. The detailed characterisation of the solid products revealed, that phases exhibiting different catalytic activities and selectivities are formed as micro- or nanocrystalline metals and/or metal oxides.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

12.
The solid-state mechanochemical method was proved to be a fast, simple, and efficient route to the synthesis of heterometallic [Au(CN)(2)]-based coordination polymers. Thus, a series of mixed-metal complexes, such as KCo[Au(CN)(2)](3), KNi[Au(CN)(2)](3), Cu(H(2)O)(2)[Au(CN)(2)](2), and Zn[Au(CN)(2)](2), was obtained by grinding stoichiometric amounts of K[Au(CN)(2)] and transition metal(II) chlorides. This solid-state method rapidly yields pure dicyanoaurate-based compounds, also in cases when the aqueous solution synthesis leads to an unseparable mixture of products. In addition, in some cases, the solid state reaction was faster than the corresponding solvent-based reaction. This mechanochemical method can be applied also to main group metals to obtain various cyanoaurate-based heterometallic coordination polymers, such as Me(2)Sn[Au(CN)(2)](2) and Ph(3)Sn[Au(CN)(2)]. For the 2:1 mixture of K[Au(CN)(2)] and Me(2)SnCl(2), the dramatic enhancement of the reaction rate by the presence of a minor amount of water was noticed. In Ph(3)Sn[Au(CN)(2)], as was revealed by single-crystal X-ray diffraction, each Ph(3)Sn unit is linked to two others by two Au(CN)(2) bridges via Sn-N bonds to form an infinite cyanide-bridged chain. There are no Au···Au contacts between the chains due to the sterical hindrance of the phenyl groups. A dehydrated blue Co[Au(CN)(2)](2) complex was obtained during grinding or heating of the moderate-pink Co(H(2)O)(2)[Au(CN)(2)](2) complex. This complex displays a vapochromic response when exposed to a variety of organic solvents, as well as water and ammonia vapors.  相似文献   

13.
An environmentally benign method for the synthesis of noble metal nanoparticles has been reported using aqueous solution of gum kondagogu (Cochlospermum gossypium). Both the synthesis, as well as stabilization of colloidal Ag, Au and Pt nanoparticles has been accomplished in an aqueous medium containing gum kondagogu. The colloidal suspensions so obtained were found to be highly stable for prolonged period, without undergoing any oxidation. SEM-EDXA, UV-vis spectroscopy, XRD, FTIR and TEM techniques were used to characterize the Ag, Au and Pt nanoparticles. FTIR analysis indicates that -OH groups present in the gum matrix were responsible for the reduction of metal cations into nanoparticles. UV-vis studies showed a distinct surface plasmon resonance at 412 and 525 nm due to the formation of Au and Ag nanoparticles, respectively, within the gum network. XRD studies indicated that the nanoparticles were crystalline in nature with face centered cubic geometry. The noble metal nanoparticles prepared in the present study appears to be homogeneous with the particle size ranging between 2 and 10 nm, as evidenced by TEM analysis. The Ag and Au nanoparticles formed were in the average size range of 5.5±2.5 nm and 7.8±2.3 nm; while Pt nanoparticles were in the size range of 2.4±0.7 nm, which were considerably smaller than Ag and Au nanoparticles. The present approach exemplifies a totally green synthesis using the plant derived natural product (gum kondagogu) for the production of noble metal nanoparticles and the process can also be extended to the synthesis of other metal oxide nanoparticles.  相似文献   

14.
This article focuses on two different approaches to create nanoscale transition metal chalcogenide materials. First, we used chemical nanofabrication, a combination of top-down patterning and bottom-up solid-state synthesis, to achieve control over the shape, size, and ordering of the patterned nanomaterials. We demonstrated orientational control over nanocrystals within sub-300 nm patterns of MoS2 and formed free-standing nanostructures of crystalline NiS2. In addition, crossed line arrays of mixed metal chalcogenide nanostructures were achieved, and TaS2 nanopatterns were made by the chemical transformation of tantalum oxide templates. Second, we developed a one-pot procedure using molecular precursors to synthesize two-dimensional NbSe2, TaS2 and TaSe2 nanoplates and one-dimensional NbSe2 wires depending on the relative amount of surfactants in the reaction mixture. Prospects for these transition metal chalcogenide nanomaterials with controlled shapes and morphologies will be discussed.  相似文献   

15.
The class of thermotropic ionic liquid crystals (LCs) of the metal alkanoates possesses a number of unique properties, such as intrinsic ionic conductivity, high dissolving ability and ability to form time-stable mesomorphic glasses. These ionic LCs can be used as nanoreactors for the synthesis and stabilisation of different types of nanoparticles (NPs). Thus, some semiconductors, metals and core/shell NPs were chemically synthesised in the thermotropic ionic liquid crystalline phase (smectic A) of the cadmium octanoate (CdC8) and of the cobalt octanoate (CoC8). By applying the scanning electron microscopy, the cadmium and cobalt octanoate composites containing CdS, Au, Ag and core/shell Au/CdS NPs have been studied. NPs’ sizes and dispersion distribution of the NPs’ size in the nanocomposites have been obtained.  相似文献   

16.
We devise a new and green route for the multi‐gram synthesis of core–shell nanoparticles (NPs) in one step under organic‐free and pH‐neutral conditions. Simply mixing core and shell metal precursors in the presence of solid metal oxides in water allowed for the facile fabrication of small CeO2‐covered Au and Ag nanoparticles dispersed on metal oxides in one step. The CeO2‐covered Au nanoparticles acted as a highly efficient and reusable catalyst for a series of chemoselective hydrogenations, while retaining C=C bonds in diverse substrates. Consequently, higher environmental compatibility and more efficient energy savings were achieved across the entire process, including catalyst preparation, reaction, separation, and reuse.  相似文献   

17.
Graphene has been decorated by nanoparticles of noble metals and other inorganic materials. In the present study, we have decorated graphene-like MoS2 and MoSe2, containing 3–5 layers, with Au, Ag and Pt nanoparticles. We have characterized these nanocomposites using X-ray diffraction, electron microscopy and absorption spectroscopy. The studies reveal that the surfaces of the layered inorganic materials get uniformly coated with the noble metal nanoparticles. There are indications that the interaction of the metal particles with these layered materials is rather weak.  相似文献   

18.
Porous metal oxide (Co3O4, NiO, or ZnO) films were fabricated by a self-template method using layered hydroxide metal acetates (LHMA; metal = Co, Ni, or Zn) as templates. LHMAs were initially grown on glass substrates through a chemical bath deposition in methanolic-aqueous solutions of metal acetates at 60°C. The template films had a unique, nest-like morphology consisting of interlaced flake-like particles as a result of two-dimensional crystal growth of LHMAs in supersaturated solutions. The templates were successfully converted into porous Co3O4, NiO, or ZnO films by heating at 500°C for 10 min in air without microstructural deformation.  相似文献   

19.
It is very interesting and also a big challenge to encapsulate metal clusters within microporous solids to expand their application diversity. For this target, herein, we present an electrochemical synthesis strategy for the encapsulation of noble metals (Au, Pd, Pt) within ZIF‐8 cavities. In this method, metal precursors of AuCl42?, PtCl62?, and PdCl42? are introduced into ZIF‐8 crystals during the concurrent crystallization of ZIF‐8 at the anode. As a consequence, very small metal clusters with sizes around 1.2 nm are obtained within ZIF‐8 crystals after hydrogen reduction; these clusters exhibit high thermal stability, as evident from the good maintenance of their original sizes after a high‐temperature test. The catalytic properties of the encapsulated metal clusters within ZIF‐8 are evaluated for CO oxidations. Because of the small pore window of ZIF‐8 (0.34 nm) and the confinement effect of small pores, about 80 % of the metal clusters (fractions of 0.74, 0.77, and 0.75 for Au, Pt, and Pd in ZIF‐8, respectively) retain their catalytic activity after exposure to the organosulfur poison thiophene (0.46 nm), which is in contrast to their counterparts (fractions of 0.22, 0.25, and 0.20 for Au, Pt, and Pd on the SiO2 support). The excellent performances of metal clusters encapsulated within ZIF‐8 crystals give new opportunities for catalytic reactions.  相似文献   

20.
Supported catalysts are among the most important classes of catalysts. They are typically prepared by wet‐chemical methods, such as impregnation or co‐precipitation. Here we disclose that dry ball milling of macroscopic metal powder in the presence of a support oxide leads in many cases to supported catalysts with particles in the nanometer size range. Various supports, including TiO2, Al2O3, Fe2O3, and Co3O4, and different metals, such as Au, Pt, Ag, Cu, and Ni, were studied, and for each of the supports and the metals, highly dispersed nanoparticles on supports could be prepared. The supported catalysts were tested in CO oxidation, where they showed activities in the same range as conventionally prepared catalysts. The method thus provides a simple and cost‐effective alternative to the conventionally used impregnation methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号