首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supercapacitor based on graphene and ionic liquid electrolyte   总被引:2,自引:0,他引:2  
A new kind of supercapacitor by using chemical reduced graphene (CRG) as electrode material and ionic liquid with addition of acetonitrile as electrolyte is assembled and investigated. CRG materials with high surface area are prepared by chemical reduction of graphene oxide. The capacitive properties of the supercapacitor composed of the CRG and ionic liquid electrolyte are studied by electrical impedance spectroscopy, cyclic voltammetry and galvanostatic charge–discharge. With the combined advantages of graphene and ionic liquid, the supercapacitor shows perfect performance. The supercapacitor possesses wide cell voltage and good stability. The specific capacitance, energy density, and specific power density of the present supercapacitor are 132?Fg??, 143.7?Wh?kg??, and 2.8?kW?kg??, respectively. The results demonstrate the potential application of electrical energy storage devices with high performance based on this new kind of supercapacitor.  相似文献   

2.
The graphene anode was investigated in an ionic liquid electrolyte (0.7 M lithium bis(trifluoromethanesulfonyl)imide (LiNTf2)) in room temperature ionic liquid (N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPyrNTf2)). SEM and TEM images suggested that the electrochemical intercalation/deintercalation process in the ionic liquid electrolyte without vinylene carbonate (VC) leads to small changes on the surface of graphene particles. However, a similar process in the presence of VC results in the formation of a coating (SEI—solid electrolyte interface) on the graphene surface. During charging/discharging tests, the graphene electrode working together with the 0.7 M LiNTf2 in MPPyrNTf2 electrolyte lost its capacity, during cycling and stabilizes at ca. 200 mAh g?1 after 20 cycles. The addition of VC to the electrolyte (0.7 M LiNTf2 in MPPyrNTf2?+?10 wt.% VC) considerably increases the anode capacity. Electrodes were tested at different current regimes: ranging between 50 and 1,000 mA g?1. The capacity of the anode, working at a low current regime of 50 mA g?1, was ca. 1,250 mAh g?1, while the current of 500 mA g?1 resulted in capacity of 350 mAh g?1. Coulombic efficiency was stable and close to 95 % during ca. 250 cycles. The exchange current density, obtained from impedance spectroscopy, was 1.3?×?10?7 A cm?2 (at 298 K). The effect of the anode capacity decrease with increasing current rate was interpreted as the result of kinetic limits of the electrode operation.  相似文献   

3.
For the purpose of preparing liquefied graphene oxide (GO), a process consisting of sulfonation with sodium sulfanilic acid and ionization with bulky amine-terminated Jeffamine? was designed and performed. The obtained hybrid fluid is actually a supramolecular ionic liquid (SIL) with sulfonated GO as the central anions and the terminal ammonium groups of Jeffamine? as the surrounding cations. The successful grafting of the GO sheets with Jeffamine?via an ionic structure was verified and the morphology of the SIL was characterized. The SIL based on GO (GO-SIL) exhibits excellent solubility and amphiphilicity. The rheological measurements confirm the essential viscoelasticity and the liquid-like behavior of GO-SIL. The present GO based SIL suggests promising applications in the fabrication of various GO or graphene based composite materials. In addition, the new functionalization method may guide the future work on acquiring derivatives with tunable properties by simply changing the bulky canopy.  相似文献   

4.
5.
Porous nitrogen-doped graphene (PNG) has been prepared via simple thermal treatment of graphene oxide and urea, and the morphology and structure of the PNG have been characterized by using a range of electron microscopy, X-ray photoelectron spectroscopy, and other techniques. The electrochemical performances of the PNG have been investigated in an ionic liquid electrolyte by cyclic voltammetry and galvanostatic charge-discharge via both three-electrode and two-electrode configurations. The PNG electrode delivers a specific capacitance of 310 F g?1 at 1 A g?1 with good cycling stability over 4000 cycles. The high electrochemical performance is ascribed to the porous structure and nitrogen-doping in the PNG. The porous structure enables high specific surface area and rapid ion mobility, contributing to double layer capacitance, while the N-doping enhances electrochemical activity and electric conductivity, contributing to pseudocapacitance. Meanwhile, the ionic liquid electrolyte enables a very wide working voltage of 3 V, leading to a high energy density up to 163.8 W h kg?1. The fabricated supercapacitor can light up a LED for a long while with low self-discharge, showing good potential for practical application.  相似文献   

6.
A stable dye-sensitized solar cell has been obtained based on a new binary ionic liquid electrolyte system containing 1-propyl-3-methylimidazolium iodide and 1-ethyl-3-methylimidazolium tetracyanoborate.  相似文献   

7.
1-Ethyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imide (EMI-TFSI) has been shown to reversibly permit lithium intercalation into standard graphite when vinylene carbonate is used in small amounts as an additive.  相似文献   

8.
A composite of aminosilane-grafted TiO2 (TA) and graphene oxide (GO) was prepared via a hydrothermal process. The TiO2/graphene oxide-based (TA/GO) anode was investigated in an ionic liquid electrolyte (0.7 M lithium bis(trifluoromethanesulfonyl)imide (LiNTf2)) in ionic liquid (N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPyrNTf2)) at room temperature and in sulfolane (1 M lithium hexafluorophosphate (LiPF6) in tetramethylene sulfolane (TMS)). Scanning and transmission electron microscopy (SEM and TEM) observations of the anode materials suggested that the electrochemical intercalation/deintercalation process in the ionic liquid electrolyte with vinylene carbonate (VC) leads to small changes on the surface of TA/GO particles. The addition of VC to the electrolyte (0.7 M LiNTf2 in MPPyrNTf2 + 10 wt.% VC) considerably increases the anode capacity. Electrodes were tested at different current regimes in the range 5–50 mA g?1. The capacity of the anode, working at a low current regime of 5 mA g?1, was ca. 245 mA g?1, while a current of 50 mA g?1 resulted in a capacity of 170 mA g?1. The decrease in anode capacity with increasing current rate was interpreted as the result of kinetic limits of electrode operation. A much lower capacity was observed for the system TA/GO│1 M LiPF6 in TMS + 10 wt.% VC│Li.  相似文献   

9.
An ionic liquid polymer gel containing 1-methyl-3-propylimidazolium iodide (MPII) and poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) has been employed as quasi-solid-state electrolyte in dye-sensitized nanocrystalline TiO2 solar cells with an overall conversion efficiency of 5.3% at AM 1.5 illumination.  相似文献   

10.
An ionic liquid polymer, poly (1-alkyl-3-(acryloyloxy)hexylimidazolium iodide), was employed as an iodine-free electrolyte in all-solid-state dye-sensitized solar cells with an overall conversion efficiency of 5.29% under AM 1.5 simulated solar light (100 mW cm(-2)) illumination.  相似文献   

11.
以离子液体1-丁基-3-甲基咪唑六氟磷酸盐为粘合剂制备了碳糊电极,然后将氧化石墨烯滴涂到碳糊电极表面制成了一种新型的氧化石墨烯修饰碳离子液体电极。研究了鸟嘌呤和腺嘌呤在修饰电极上的电化学行为。实验结果表明,在0.1 mol/L醋酸盐缓冲溶液中(pH4.5),鸟嘌呤和腺嘌呤在该修饰电极上具有良好的电化学行为,在2.0×10-7~1.5×10-5mol/L浓度范围内鸟嘌呤和腺嘌呤的浓度在该电极上与电化学响应信号呈良好的线性关系,相关系数分别为为0.992和0.996。信噪比为3时,检出限为1.0×10-8mol/L。  相似文献   

12.
Electrochemical reductive exfoliation of graphite to few layered graphene(FLG) in presence of 1-ethyl-2,3-dimethyl imidazolium bis(trifluoromethylsulfonyl) imide ionic liquid and redox ionic liquid based ferrocene has been investigated. Thus, by applying a mild negative potential(-2.7 V vs. Fc/Fc~+) to carbon electrode in ionic liquid graphene flakes could be generated. The generated materials have been characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, high resolution transmission electron microscopy and atomic force microscopy. XPS and Raman analysis show that the electrochemical reductive exfoliation provides the formation of FLG. The thickness of the resulting FLG was found to be ranged between 4 and1 nm. HR-TEM images reveal the formation of few graphene layers and in some cases single graphene layer was observed.Moreover, this electrochemical route conduces to the formation of ionic liquid functionalized FLG. Finally, the reductive exfoliation was further investigated in the presence of redox ionic liquid. XPS and electrochemical measurements confirm the presence of ferrocene.  相似文献   

13.
Room temperature ionic liquids (RTILs) have been used as electrolytes to investigate the anionic structure dependence of the photoelectrochemical responses of dye-sensitized solar cells (DSCs). A series of RTILs with a fixed cation structure coupling with various anion structures are employed, in which 1-methyl-3-propylimidazolium iodide (PMII) and I(2) are dissolved as redox couples. It is found that both the diffusivity of the electrolyte and the photovoltaic performance of the device show a strong dependence on the fluidity of the ionic liquids, which is primarily altered by the anion structure. Further insights into the structure-dependent physical properties of the employed RTILs are discussed in terms of the reported van der Waals radius, the atomic charge distribution over the anion backbones, the interaction energy of the anion and cation, together with the existence of ion-pairs and ion aggregates. Particularly, both the short-circuit photocurrent and open-circuit voltage exhibit obvious fluidity dependence. Electrochemical impedance and intensity-modulated photovoltage/photocurrent spectroscopy analysis further reveal that increasing the fluidity of the ionic liquid electrolytes could significantly decrease the diffusion resistance of I(3)(-) in the electrolyte, and retard the charge recombination between the injected electrons with triiodide in the high-viscous electrolyte, thus improving the electron diffusion length in the device, as well as the photovoltaic response. However, the variation of the electron diffusion coefficients is trivial primarily due to the effective charge screening of the high cation concentration.  相似文献   

14.

The existing energy situation demands not only the huge energy in a short time but also clean energy. In this regard, an integrated photo-supercapacitor device has been fabricated in which photoelectric conversion and energy storage are achieved simultaneously. A novel carbazole-based dye is synthesized and characterized for photosensitizer. The silver-doped titanium dioxide (Ag-TiO2) is synthesized, and it is used as photoanode material. Different concentrations of tetrabutylammonium iodide (TBAI)-doped polyvinyl alcohol–polyvinylpyrrolidone (PVA-PVP) blend polymer electrolytes are prepared, and their conductivity and dielectric properties were studied. Reduced graphene oxide (r-GO) is synthesized by a one-pot synthesis method and confirmed using Raman spectroscopy for counter electrode material in dye-sensitized solar cell (DSSC) and supercapacitor electrodes. The DSSC having 4% Ag-TiO2–based photoanode showed the highest efficiency of 1.06% (among r-GO counter electrodes) and 2.37% (among platinum counter electrodes). The supercapacitor before integration and after integration exhibits specific capacitance of 1.72 Fg−1 and 1.327 Fg−1, respectively.

Graphical Abstract

  相似文献   

15.
In this work, we report the synthesis of porous activated carbon (AC). AC was derived from rotten carrot, at different values of activating temperature under inert atmosphere, employing chemical activation method and ZnCl2 as activation agent. On the basis of results observed by surface area and pore size analysis, effect of activation temperature on synthesized AC was determined. Other material properties such as morphology, thermal stability, vibrational response, and crystal structure of prepared AC were studied using standard techniques of material characterization. Further, the electrochemical performance of synthesized AC was studied as an electrode, in aqueous, organic and ionic liquid based electrolyte. It was found that the synthesized AC based electrode exhibits highest specific capacitance (135.5?F?g?1 at 10?mHz) in aqueous electrolyte and highest specific energy (29.1?Wh?kg?1 at 2.2?A?g?1) and specific power (142.5?kW?kg?1 at 2.2?A?g?1) in ionic liquid based electrolyte. This shows the suitability of synthesized material for use in energy storage applications.  相似文献   

16.
Polymer/ionic liquid composites were investigated as solvent-free electrolytes for lithium batteries. Ternary electrolytes based upon poly(ethylene oxide), an ionic liquid and a conducting salt were UV crosslinked with benzophenone as the photoinitiator. Crosslinking leads to an increase in mechanical stability of the PEO composites. This straight-forward process provides a way to increase the content of ionic liquid and thus to raise ionic conductivity without loss of mechanical stability. Impedance measurements showed that the ionic conductivity of the composites is not affected by the UV curing process. Moreover, the UV curing process causes a decrease in the degree of crystallinity in the PEO composites which contributes to an increase in ionic conductivity. The present work is related to safety issues of lithium batteries.  相似文献   

17.
Developing electrolyte with high electrochemical stability is the most effective way to improve the energy density of double layer capacitors (DLCs), and ionic liquid is a promising choice. Herein, a novel ionic liquid based high potential electrolyte with a stabilizer, succinonitrile, was proposed to improve the high potential stability of the DLC. The electrolyte with 7.5 wt% succinonitrile added has a high ionic conductivity of 41.1 mS cm-1 under ambient temperature, and the DLC adopting this electrolyte could be charged to 3.0 V with stable cycle ability even under a discharge current density of 6 A g-1. Moreover, the energy density could be increased by 23.4% when the DLC was charged to 3.0 V compared to that charged to 2.7 V.  相似文献   

18.
This study describes the use of a solution of a phosphonium protic ionic liquid [Bu3HP][BF4] (3.4 mol L−1) in acetonitrile as an electrolyte for carbon-based supercapacitors, with an operating voltage of 1.5 V and capacities comparable to conventional aqueous electrolytes. The combination of good cycling abilities and an operating temperature ranging from − 40 °C to 80 °C rendered possible the realization of supercapacitors having an extended specific energy in a large temperature range.  相似文献   

19.
20.
A novel oxygen containing spiro ammonium salt, oxazolidine-3-spiro-1’-pyrrolidinium tetrafluoroborate (OPBF4) was synthesized using an innovative technique for use as electrolyte in electrochemical double layer capacitors (EDLC). Comparison of OPBF4 with commercially available, tetraethyl ammonium tetrafluoroborate (TEABF4) showed higher voltage window and higher capacitance for the OPBF4 compound. Moreover, molarity of 3 M was produced with OPBF4 as compared to a maximum of 1.5 M for TEABF4 in acetonitrile (AN). This is especially important to enable the fabrication of higher energy density EDLC. This is the first report of testing OPBF4 compound in an EDLC device, and it qualifies as a reasonable alternative to TEABF4 for high performance ultracapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号