共查询到20条相似文献,搜索用时 15 毫秒
1.
Saman Azodi-Deilami Alireza Hassani Najafabadi Ebadullah Asadi Majid Abdouss Davood Kordestani 《Mikrochimica acta》2014,181(15-16):1823-1832
We are presenting magnetic molecularly imprinted polymer nanoparticles (m-MIPs) for solid-phase extraction and sample clean-up of paracetamol. The m-MIPs were prepared from magnetite (Fe3O4) as the magnetic component, paracetamol as the template, methacrylic acid as a functional monomer, and 2-(methacrylamido) ethyl methacrylate as a cross-linker. The m-MIPs were then characterized by transmission electron microscopy, FT-IR spectroscopy, X-ray diffraction and vibrating sample magnetometry. The m-MIPs were applied to the extraction of paracetamol from human blood plasma samples. Following its elution from the column loaded with the m-MIPs with an acetonitrile-buffer (9:1) mixture, it was submitted to HPLC analysis. Paracetamol can be quantified by this method in the 1 μg L?1 to 300 μg L?1 concentration range. The limit of detection and limit of quantification in plasma samples are 0.17 and 0.4 μg L?1. The preconcentration factor of the m-MIPs is 40. The HPLC method shows good precision (4.5 % at 50 μg L?1 levels) and recoveries (between 83 and 91 %) from spiked plasma samples. Figure
We are presenting magnetic molecularly imprinted polymer nanoparticles (m-MIPs) for solid-phase extraction and sample clean-up of paracetamol. The m-MIPs were applied to the extraction of paracetamol from human blood plasma samples 相似文献
2.
Biuck Habibi Shiva Rostamkhani Mehrdad Hamidi 《Journal of the Iranian Chemical Society》2018,15(7):1569-1580
A simple, sensitive and accessible while reliable method was developed and validated for quantitation of buprenorphine (Bup) as a highly lipophilic drug in human urine samples. The proposed method is based on a rapid and easy dispersive micro solid-phase extraction procedure using magnetic molecularly imprinted polymer nanoparticles (MMIPNPs), magnetite (Fe3O4) cores surrounded by polyamidoamine and Bup as template, followed by high-performance liquid chromatographic analysis with fluorescence detector (HPLC-FL). The prepared MMIPNP adsorbent was characterized by different techniques. Transmission electron microscopy images show that the Fe3O4 core nanoparticles are well enwrapped by MIP layers. In determination process, Bup could be quantitatively extracted using MMIPNPs and then can be easily desorbed by mixture of sodium hydroxide (0.1 mol/L) and methanol (1:9, v/v) solution before injection to HPLC. The relative recoveries of Bup were found to be 97.4–100.3%, and the linear dynamic range was within the ranges of 1–1000 ng/mL with R2 of 0.9998. Remarkably high quality of 0.21 and 0.71 ng/mL was obtained as the limit of detection and limit of quantification, respectively. The developed method was successfully applied for determination of Bup in infected human urine samples. 相似文献
3.
A new molecularly imprinted polymer for selective extraction of cotinine from urine samples by solid-phase extraction 总被引:1,自引:0,他引:1
Cotinine, the main metabolite of nicotine in human body, is widely used as a biomarker for assessment of direct or passive
exposure to tobacco smoke. A method for molecularly imprinted solid-phase extraction (MISPE) of cotinine from human urine
has been investigated. The molecularly imprinted polymer (MIP) with good selectivity and affinity for cotinine was synthesized
using cotinine as the template molecule, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as
the cross-linker. The imprinted polymer was evaluated for use as a SPE sorbent, in tests with aqueous standards, by comparing
recovery data obtained using the imprinted form of the polymer and a non-imprinted form (NIP). Extraction from the aqueous
solutions resulted in more than 80% recovery. A range of linearity for cotinine between 0.05 and 5 μg mL−1 was obtained by loading 1 mL blank urine samples spiked with cotinine at different concentrations in acetate buffer of pH
9.0, and by using double basic washing and acidic elution. The intra-day coefficient of variation (CV) was below 7% and inter-day
CV was below 10%. This investigation has provided a reliable MISPE–HPLC method for determination of cotinine in human urine
from both active smokers and passive smokers.
Figure 相似文献
4.
A new molecularly imprinted polymer for the on-column solid-phase extraction of diethylstilbestrol from aqueous samples 总被引:1,自引:0,他引:1
Bravo JC Garcinuño RM Fernández P Durand JS 《Analytical and bioanalytical chemistry》2007,388(5-6):1039-1045
The estrogenic compound diethylstilbestrol (DES) is widely studied because of its potential endocrine disruption effects.
The prohibition of the use of diethylstilbestrol as a growth promoter has not been enough to ensure the total disappearance
of this compound from environmental matrices. Due to the low levels of DES present in the environment, preconcentration and
clean up methods are necessary for its analysis. This paper describes the synthesis and use of a molecularly imprinted polymer
(MIP) as sorbent for on-column solid-phase extraction of DES from aqueous samples. The selectivity of the DES-MIP was evaluated
towards several selected estrogens such as hexestrol (HEX), estrone (E1), estriol (E3), estradiol (E2) and ethynylestradiol
(EE2). HPLC-DAD was used to quantify all analytes at 230-nm wavelength. The method has been successfully applied to the analysis
of DES in spiked river and tap water samples, with recoveries of 72% and 83% respectively. 相似文献
5.
Yin X Liu Q Jiang Y Luo Y 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2011,79(1):191-196
A method employing molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE) to pretreat samples was developed. The polymers were prepared by precipitation polymerization with andrographolide as template molecule. The structure of MIP was characterized and its static adsorption capacity was measured by the Scatchard equation. In comparison with C(18)-SPE and non-imprinted polymer (NIP) SPE column, MIP-SPE column displays high selectivity and good affinity for andrographolide and dehydroandrographolide for extract of herb Andrographis paniculata (Burm.f.) Nees (APN). MIP-SPE column capacity was 11.9±0.6 μmol/g and 12.1±0.5 μmol/g for andrographolide and dehydroandrographolide, respectively and was 2-3 times higher than that of other two columns. The precision and accuracy of the method developed were satisfactory with recoveries between 96.4% and 103.8% (RSD 3.1-4.3%, n=5) and 96.0% and 104.2% (RSD 2.9-3.7%, n=5) for andrographolide and dehydroandrographolide, respectively. Various real samples were employed to confirm the feasibility of method. This developed method demonstrates the potential of molecularly imprinted solid phase extraction for rapid, selective, and effective sample pretreatment. 相似文献
6.
Multivariate optimization of molecularly imprinted polymer solid-phase extraction applied to parathion determination in different water samples 总被引:2,自引:0,他引:2
In this work a parathion selective molecularly imprinted polymer was synthesized and applied as a high selective adsorber material for parathion extraction and determination in aqueous samples. The method was based on the sorption of parathion in the MIP according to simple batch procedure, followed by desorption by using methanol and measurement with square wave voltammetry. Plackett-Burman and Box-Behnken designs were used for optimizing the solid-phase extraction, in order to enhance the recovery percent and improve the pre-concentration factor. By using the screening design, the effect of six various factors on the extraction recovery was investigated. These factors were: pH, stirring rate (rpm), sample volume (V1), eluent volume (V2), organic solvent content of the sample (org%) and extraction time (t). The response surface design was carried out considering three main factors of (V2), (V1) and (org%) which were found to be main effects. The mathematical model for the recovery percent was obtained as a function of the mentioned main effects. Finally the main effects were adjusted according to the defined desirability function. It was found that the recovery percents more than 95% could be easily obtained by using the optimized method. By using the experimental conditions, obtained in the optimization step, the method allowed parathion selective determination in the linear dynamic range of 0.20-467.4 μg L−1, with detection limit of 49.0 ng L−1 and R.S.D. of 5.7% (n = 5). Parathion content of water samples were successfully analyzed when evaluating potentialities of the developed procedure. 相似文献
7.
Beltran A Marcé RM Cormack PA Sherrington DC Borrull F 《Journal of separation science》2008,31(15):2868-2874
In this paper we describe, for the first time, a molecularly imprinted polymer (MIP) for the antibiotic amoxicillin (AMX), synthesised by a noncovalent molecular imprinting approach and used to extract AMX selectively from urine samples. The MIP was applied as a molecularly selective sorbent in molecularly imprinted SPE (MISPE) in an off-line mode, where it showed useful cross-selectivity for a structurally related antibiotic, cephalexin (CPX). By using a MISPE protocol, the MIP was able to selectively extract both AMX and CFX from 5 mL of water spiked with 10 mg/L with recoveries of 75 and 78% for AMX and CFX, respectively. When applied to real samples (urine) at clinically relevant concentrations, recoveries from 2 mL of human urine spiked with 20 mg/L decreased slightly to 65 and 63% for AMX and CFX, respectively. To demonstrate further the selectivity of the MIP obtained, a comparison with commercially available SPE cartridges was performed. Improvements in the retention of both AMX and CFX on the MIP were obtained relative to the commercially available cartridges, and the MISPE extracts were considerably cleaner, due to molecularly selective analyte binding by the MIP. 相似文献
8.
Caro E Marcé RM Cormack PA Sherrington DC Borrull F 《Journal of separation science》2005,28(16):2080-2085
A molecularly imprinted polymer (MIP) is synthesised by a noncovalent protocol in which ibuprofen was used as a template molecule. The polymer was evaluated chromatographically and it was seen that the MIP showed cross-reactivity. Subsequently, when this polymer was used as sorbent in SPE it was possible to selectively extract a mixture of nonsteroidal anti-inflammatory drugs from aqueous samples when a cleanup step with dichloromethane was performed. The performance of the MIP was evaluated with river water and water from a wastewater treatment plant, and compared with the performance of a commercial Isolute ENV+ sorbent. 相似文献
9.
Vitor RV Martins MC Figueiredo EC Martins I 《Analytical and bioanalytical chemistry》2011,400(7):2109-2117
A method constituted by molecularly imprinted solid-phase extraction (MISPE) with high-performance liquid chromatography coupled
to diode array detector (HPLC-DAD) was developed for cotinine analysis in saliva samples. For this purpose, the separation
was carried out with a C18 reversed-phase column at 20 °C. The mobile phase which was composed of a mixture of 09:91 (v/v) acetonitrile/phosphate buffer, pH 6.3, was delivered with isocratic flow rate at 1.4 mL min−1. Employing MISPE, the best conditions were achieved with 1.5 mL of saliva plus 1.5 mL of 0.1 mol L−1 of acetate buffer, pH 5.5, which were then passed through a cartridge previously conditioned with 2 mL acetonitrile, 2 mL
methanol, and 2 mL of 0.1 mol L−1 sodium acetate buffer, pH 5.5. The washing was carried out with 1 mL deionized water, 1 mL of 0.1 mol L−1 sodium hydroxide, and 1 mL hexane; finally; the cotinine elution was carried out with 3 mL methanol/water (97.5: 2.5, v/v). Linearity ranged from 30 to 500 ng mL−1 with r > 0.99. Intra-assay, interassay precision, and accuracy ranged from 3.1% to 10.1%, 5.2% to 15.9%, and 99.22% to 111.17%,
respectively. The detection and quantification limits were 10 and 30 ng mL−1, respectively. This investigation has provided a reliable method for routine cotinine determination in saliva, and it is
an important tool for monitoring cigarette smoke exposure in smokers. The method was applied in five smokers’ samples who
consumed around five to 20 cigarettes per day and the values of cotinine in saliva were from 66.7 to 316.16 ng mL−1. 相似文献
10.
In this work, the synthesis of molecularly imprinted polymer microspheres with narrow particle size distributions and core-shell morphology by a two-step precipitation polymerization procedure is described. Polydivinylbenzene (poly DVB-80) core particles were used as seed particles in the production of molecularly imprinted polymer shells by copolymerization of divinylbenzene-80 with methacrylic acid in the presence of thiabendazole (TBZ) and an appropriate porogen. Thereafter, polymer particles were packed into refillable stainless steel HPLC columns used in the development of an inline molecularly imprinted SPE method for the determination of TBZ in citrus fruits and orange juice samples. Under optimized chromatographic conditions, recoveries of TBZ within the range 81.1-106.4%, depending upon the sample, were obtained, with RSDs lower than 10%. This novel method permits the unequivocal determination of TBZ in the samples under study, according to the maximum residue levels allowed within Europe, in less than 20 min and without any need for a clean-up step in the analytical protocol. 相似文献
11.
Lars I. Andersson Johan Henriksson Lars-Inge Olsson Mohamed Abdel-Rehim 《Analytica chimica acta》2004,526(2):147-154
Molecular imprints selective for a homologous series of local anaesthetics, including bupivacaine, ropivacaine and mepivacaine, were prepared and the resultant polymers were used for solid-phase extraction of human plasma. The template was a structural analogue, pentycaine, which was imprinted in methacrylic acid-ethylene glycol dimethacrylate copolymers. Equilibrium ligand binding experiments using radiolabelled bupivacaine were performed to characterize the imprinted polymers, as well as to identify optimal conditions for selective extraction of plasma samples. Dilution of the plasma prior to extraction with citrate buffer pH 5.0 containing ethanol and Tween 20 was found optimal for selective imprint-analyte binding, and for reduction of non-specific adsorption of lipophilic contaminants to the hydrophobic MIP surface. Wash steps using 20% methanol in water followed by a solvent switch to 10% ethanol in acetonitrile removed contaminants and strengthened the selective imprint-analyte binding. Elution under basic conditions using triethylamine-water-acetonitrile mixtures recovered bupivacaine in 89% yield with superior selectivity over elution under acidic conditions. The final protocol extracted trace levels of ropivacaine and bupivacaine from human plasma and allowed determination of bupivacaine in the range of 3.9-500 nmol L−1 and ropivacaine in the range of 7.8-500 nmol L−1 with inter-assay accuracies of 94-99 and 95-104%, respectively. This present investigation provides an improved understanding of approaches available for optimization of protocols for molecular-imprint based solid-phase extraction of plasma samples. 相似文献
12.
Jing T Niu J Xia H Dai Q Zheng H Hao Q Mei S Zhou Y 《Journal of separation science》2011,34(12):1469-1476
An automated system has been developed for the determination of trace tetracycline antibiotics (TCs) in egg samples, based on online molecularly imprinted solid-phase extraction (MISPE) coupling with high-performance liquid chromatography (HPLC). Oxytetracycline and chlortetracycline were chosen as mixed templates to synthesize highly selective molecularly imprinted polymers for online extraction. Under the optimal online MISPE-HPLC condition, 10 mL egg samples were injected into the MISPE column and then the matrix was washed out. By rotating the switching valve, TCs were transferred to the analytical column and then separated by HPLC. Because sample pretreatment and chromatographic separation were carried out simultaneously, the whole analytical time (18 min) was significantly shortened compared with conventional offline techniques. The detection limits ranged from 0.8 to 1.3 ng/g. The enhancement factors were in the range of 159-410. The spiked recoveries of TCs in real egg samples ranged from 91.6 to 107.6% and the relative standard deviations (RSDs) were not higher than 4.0%. 相似文献
13.
Overoxidized polypyrrole (OPPy) films templated with salicylate (SA) have been utilized as conducting molecular imprinted polymers (CMIPs) for potential-induced selective solid-phase micro-extraction processes. Various important fabrication factors for controlling the performance of the OPPy films have been investigated using fluorescence spectrometry. Several key parameters such as applied potential for uptake, release, pH of uptake and release solution were varied to achieve the optimum micro-extraction procedure. The film template with SA exhibited excellent selectivity over some interference. The calibration graphs were linear in the ranges of 5×10(-8) to 5×10(-4) and 1.2×10(-6) to 5×10(-4)mol mL(-1) and the detection limit was 4×10(-8) mol L(-1). The OPPy film as the solid-phase micro-extraction absorbent has been applied for the selective clean-up and quantification of trace amounts of SA from physiological samples. The results of scanning electron microscopy (SEM) have confirmed the nano-structure morphologies of the films. 相似文献
14.
A novel water-compatible molecularly imprinted solid-phase extraction (MISPE) combined with zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) method for selective extraction and determination of sitagliptin in rat serum and urine was developed and validated. The effects of progenic solvents, pH, cross linker and amount of monomer were studied to optimize the efficiency and selectivity. The adsorption kinetics and isotherms were measured. The molecularly imprinted polymer (MIP) showed good specific adsorption capacity with an optimum of 180 mg/g at pH 7.5 and selective extraction of sitagliptin from rat plasma and urine. The recovery of sitagliptin from rat urine and plasma was >98%. The limits of detection (LOD) and quantification (LOQ) were 0.03 and 0.10 μg/L respectively. The proposed method overcomes the matrix effects of phospholipids generally encountered while preparation of plasma samples by precipitation of proteins. 相似文献
15.
Development of a selective molecularly imprinted polymer-based solid-phase extraction for indomethacin from water samples 总被引:1,自引:0,他引:1
A selective molecularly imprinted solid-phase extraction (MISPE) for indomethacin (IDM) from water samples was developed.
Using IDM as template molecule, acrylamide (AM) or methacrylic acid (MAA) as functional monomer, ethylene dimethacrylate (EDMA)
as crosslinker, and bulk or suspension polymerization as the synthetic method, three molecularly imprinted polymers (MIPs)
were synthesized and characterized with a rebinding experiment. It was found that the MIP of AM-EDMA produced by bulk polymerization
showed the highest binding capacity for IDM, and so it was chosen for subsequent experiments, such as those testing the selectivity
and recognition binding sites. Scatchard analysis revealed that at least two kinds of binding sites formed in the MIP, with
the dissociation constants of 7.8 μmol L−1 and 127.2 μmol L−1, respectively. Besides IDM, three structurally related compounds — acemetacin, oxaprozin and ibuprofen — were employed for
selectivity tests. It was observed that the MIP exhibited the highest selective rebinding to IDM. Accordingly, the MIP was
used as a solid-phase extraction sorbent for the extraction and enrichment of IDM in water samples. The extraction conditions
of the MISPE column for IDM were optimized to be: chloroform or water as loading solvent, chloroform with 20% acetonitrile
as washing solution, and methanol as eluting solvent. Water samples with or without spiking were extracted by the MISPE column
and analyzed by HPLC. No detectable IDM was observed in tap water and the content of IDM in a river water sample was found
to be 1.8 ng mL−1. The extraction efficiencies of the MISPE column for IDM in spiked tap and river water were acceptable (87.2% and 83.5%,
respectively), demonstrating the feasibility of the prepared MIP for IDM extraction.
Figure Molecularly imprinted polymer-based solid-phase extraction for indomethacin 相似文献
16.
Solid-phase extraction (SPE) with a molecularly imprinted polymer (MIP) as sorbent has been investigated for the clean-up of the broad-spectrum bacteriostatic antibiotic chloramphenicol (CAP) in honey samples. The MIP was prepared by using methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylate (EDMA) as cross-linker, chloroform as porogen and CAP as template molecule. The binding behaviour of the template CAP on the MIP was evaluated by high-performance liquid chromatography, and then the MIP was applied as a sorbent in SPE to selectively extract CAP from honey. It was shown that recoveries of nearly 100% of a CAP standard solution and up to 94% from spiked honey samples could be obtained after SPE. 相似文献
17.
The authors report on a surface molecular imprinting strategy for synthesizing magnetic and molecularly imprinted core-shell polymer nanoparticles (MMIPs) with a typical size of 320 nm. The triazophos-imprinted polymer shell on 180-nm magnetite particles (modified with 3-methacryloxypropyl trimethoxysilane) was obtained by radical polymerization of ethylene glycol dimethacrylate in the presence of triazophos, this followed by extractive removal of triazophos. The resulting MMIPs possess large binding capacity, high recognition selectivity, and fast binding kinetics for triazophos. They can be easily separated from a solution by using a magnet. These features result in a convenient and selective solid-phase extraction procedure for triazophos prior to its determination by UV spectrometry or by GC analysis. The method was successfully applied to the extraction and clean-up of triazophos residues in spiked homogenates of vegetables with recoveries in the range of 89.2 ~ 99.0%. The detection limits for triazophos by the UV assay and GC assay are 0.93 nM and 0.32 nM, respectively. 相似文献
18.
A molecularly imprinted polymer (MIP) has been prepared by a thermal polymerisation method using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linking agent, chloroform as porogenic solvent and an oleanane triterpene compound (18-beta-glycyrrhetinic acid) as imprinted molecule (template). Equilibrium ligand binding experiments were done to assess the performance of the MIP relative to non-imprinted polymer (NIP). After optimisation of SPE protocol (CHCl3 as washing solvent and MeOH as elution solvent), successful imprinting was confirmed by comparison of the recoveries between NIP (5%) and MIP (97%) cartridges. The binding capacity of the MIP for 18-beta-glycyrrhetinic acid was determined to be 0.94 mg g(-1). Four structurally related oleanane triterpenes (18-alpha-glycyrrhetinic acid, oleanolic acid, echinocystic acid, erythrodiol) were selected to assess the MIP selectivity. Experimental data illustrated the influence of functional groups on the triterpene skeleton. The MIP was applied to the solid-phase extraction of triterpenoids from a plant extract prior HPLC analysis. However, CHCl3 was replaced by ACN during the washing step in order to suppress non-specific interactions due to polar matrix components. A selective extraction of 18-beta-glycyrrhetinic acid from hydrolyzed extract of liquorice roots was achieved with a good extraction yield (98%). 相似文献
19.
Caro E Marcé RM Cormack PA Sherrington DC Borrull F 《Journal of separation science》2006,29(9):1230-1236
A molecularly imprinted polymer (MIP) has been prepared for the first time with ciprofloxacin (CIPRO) as the template molecule, via a noncovalent synthetic procedure. Prior to its use as a sorbent in SPE, the MIP was evaluated chromatographically to confirm that it was indeed molecularly imprinted. The MIP was then used to extract CIPRO selectively from urine samples by means of a two-step SPE procedure in which a commercial Oasis cartridge and a molecularly imprinted SPE cartridge were combined in series. This approach allowed the matrix compounds present in the samples to be removed effectively. The urine extracts obtained after this two-step SPE procedure was applied were relatively clean compared to the original samples, and this made it possible to inject directly the extracts into a mass spectrometer and thus quantify CIPRO in urine samples at low levels and reduce the time of analysis. 相似文献
20.
以表没食子儿茶素没食子酸酯(Epigallocatechin-gallate,EGCG)为模板分子,α-甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,在光冷引发条件下合成EGCG分子印迹聚合物,利用该聚合物制成分子印迹固相萃取柱,用于固相萃取茶叶提取物茶多酚,对萃取柱中的清洗液、洗脱剂、上载量等进行了选择.结果表明,在萃取柱上载样品之后,先用V(甲醇):V(水)=1:9溶液进行清洗,再用V(甲醇):V(乙酸)=9:1混合液进行目标分子的洗脱,可以得到比较纯的目标物质EGCG(色谱峰相对峰面积达92.4%),萃取柱在上载样品并进行清洗、洗脱之后,EGCG的回收率达69.3%.分子印迹柱具有较好的稳定性和耐用性能,使用20次后其选择性识别能力仍未降低,但空白印迹柱却没有这样的选择性识别能力. 相似文献