首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
In the present work, the cellulose-based materials were manufactured and used as components of electrochemical double layer capacitors (EDLCs). The preparation method of cellulose membranes as well as composite electrodes containing cellulose as a binder was presented. These materials were prepared using for the first time ionic liquid/dimethyl sulfoxide (IL/DMSO) mixture solvent. Obtained components displayed a uniform structure, thermal stability, and good electrochemical properties. The electrochemical performances of these materials were studied in 2-electrode EDLC cells by common electrochemical techniques as cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS). The composite electrodes were investigated in three types of electrolytes: aqueous, organic, and ionic liquids. The cellulose membranes were, however, soaked in an aqueous electrolyte and tested as hydrogel polymer electrolytes. All investigated materials show high efficiency in terms of specific capacity. The studied cellulose-based capacitors exhibited specific capacitance values in the range of 20–22 F g?1, depending on the type of applied electrolyte.  相似文献   

2.
纳米纤维聚苯胺在电化学电容器中的应用   总被引:15,自引:0,他引:15  
采用脉冲电流方法(PGM)合成了具有纳米纤维结构的导电聚苯胺(PANI).扫描电子显微镜对膜层观察表明, PANI膜是由直径约为100 nm的掺杂态聚苯胺纤维交织而成.以纳米纤维状聚苯胺组成电化学电容器,研究了其电化学电容性能,并与恒电流方法(GM) 制备的颗粒状PANI电容器性能进行了比较.结果表明,在相同的沉积电量下,PGM制备的纳米纤维状PANI电化学电容器比颗粒状PANI电化学电容器具有更大的电容容量,其电化学电容器的比电容可高达699 F•g-1,能量密度为54.6 Wh•kg-1.并且该电化学电容器具有良好的充放电性能和循环寿命.  相似文献   

3.
A stepwise deposition method was employed to create ordered polyaniline (PANI) nanowires with remarkably enhanced capacitance. Cyclic voltammetry, AC impedance, and galvanostatic charge/discharge cycling were employed to investigate the electrochemical performance of the PANI electrodes. The PANI-deposited electrode exhibits much higher capacitance than those prepared by one-step deposition method, which were mainly contributed from the unique nano structure of PANI and the increased biological, economical, and technical surface areas. The superior capacitive behaviors of the nano PANI electrodes show great potential in preparation of high efficient electrochemical capacitors or rechargeable batteries.  相似文献   

4.
Graphitized carbon electrode material was prepared from wastepaper by graphitization in molten sodium metal. X-ray diffraction and Raman spectroscopy were used to investigate the structural change of resulted carbons, both of which well proved the formation of graphite structure. Graphitized carbons have surface area that is nearly 26 times larger than initial carbonized paper and exhibit better electrochemical performances. The electrochemical performances of graphitized carbons were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge methods. The cyclic voltammetry results show a maximum specific capacitance of 194 F g?1. Therefore, wastepaper can be a promising electrode material for high-performance electric double-layer capacitors (EDLCs).  相似文献   

5.
本文将经水蒸气二次活化的椰壳活性炭(W-AC)作为电极材料,选择1-乙基-3甲基咪唑四氟硼酸盐([EMIM]BF4)作为电解质,结果表明W-AC电极的比电容量远高于未活化的椰壳活性炭(R-AC).使用循环伏安、恒电流充放电、交流阻抗等方法研究了不同种类离子液体电解质对超级电容器电化学性能的影响.不同阴阳离子组成的离子液体作为电解质,直接影响超级电容器的电化学性能. 研究表明,由EMIM+和BMIM+阳离子与BF4-、TFSI-阴离子构成的离子液体电解质较适用于W-AC电极. 其中在[EMIM]BF4电解质中,单片电极的比电容量可高达153 F·g-1;在1-丁基-3-甲基-咪唑四氟硼酸盐([BMIM]BF4)电解质中电位窗可达3.5V,能量密度可高达57 Wh·kg-1.本研究对于构筑高性能超级电容器离子液体的选择提供参考,以满足不同应用领域需求.  相似文献   

6.
以高性能活性炭作为负极材料, 将颗粒平均粒径为40~60 nm的纳米钴氧化物干凝胶作为正极材料组成电化学电容器, 研究了电容器在7 mol/L的KOH水溶液中的电化学性能, 其充放电电压可以达到1.4~1.6 V, 以材料本身重量计算的比能量和比功率分别达到15.4 W·h/kg和23.5 kW/kg.  相似文献   

7.
Herein, we suggest a new approach to an electric double‐layer capacitor (EDLC) that is based on a proton‐conducting ionic clathrate hydrate (ICH). The ice‐like structures of clathrate hydrates, which are comprised of host water molecules and guest ions, make them suitable for applications in EDLC electrolytes, owing to their high proton conductivities and thermal stabilities. The carbon materials in the ICH Me4NOH ? 5 H2O show a high specific capacitance, reversible charge–discharge behavior, and a long cycle life. The ionic‐hydrate complex provides the following advantages in comparison with conventional aqueous and polymer electrolytes: 1) The ICH does not cause leakage problems under normal EDLC operating conditions. 2) The hydrate material can be utilized itself, without requiring any pre‐treatments or activation for proton conduction, thus shortening the preparation procedure of the EDLC. 3) The crystallization of the ICH makes it possible to tailor practical EDLC dimensions because of its fluidity as a liquid hydrate. 4) The hydrate solid electrolyte exhibits more‐favorable electrochemical stability than aqueous and polymer electrolytes. Therefore, ICH materials are expected to find practical applications in versatile energy devices that incorporate electrochemical systems.  相似文献   

8.
In this work, we have fabricated activated carbon electrodes using the binder LA135 and assembled electrical double layer capacitors with nonaqueous electrolytes of 1 M tetraethyl ammonium tetrafluoroborate (Et4NBF4) in propylene carbonate (PC), 1 M Et4NBF4 in acetonitrile (AN), and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) ionic liquid, respectively. The main chemical compositions of the binder are polyacrylonitrile and styrene–butadiene rubber. Scanning electron microscope images show that the conductive agents have been uniformly dispersed on the activated carbons in the electrode. The thermal stabilities of electrodes using different binders are studied by thermogravimetric analysis. The electrochemical properties of cells in different nonaqueous electrolytes are characterized by cyclic voltagramms, electrochemical impedance spectra, galvanostatic charge–discharge, leakage current, and cycle life measurements. The capacitor in Et4NBF4/AN has the lowest internal resistance and superior high-rate capability, and the one in Et4NBF4/PC has the smallest leakage current. The capacitor in EMIMBF4 has the energy density as high as 35.4 Wh?kg?1 at a current density of 0.2 A g?1 (based on the total mass of active materials), which is 1.6 times higher than that of capacitor in PC electrolyte. Besides, the electrochemical properties of capacitors with different binders are comparatively studied. The capacitor using LA135 has the highest specific capacitance and moderate internal resistance comparing with the ones using poly(tetrafluoroethylene), sodium carboxymethyl cellulose + styrene–butadiene rubber or poly (vinylidene fluoride).  相似文献   

9.
Supercapacitive properties of synthesised metal oxides nanoparticles (MO where M = Ni, Co, Fe) integrated with multi-wall carbon nanotubes (MWCNT) on basal plane pyrolytic graphite electrode (BPPGE) were investigated. Successful modification of the electrode with the MWCNT-MO nanocomposite was confirmed with spectroscopic and microscopic techniques. Supercapacitive properties of the modified electrodes in sulphuric acid (H2SO4) and sodium sulphate (Na2SO4) electrolytes were investigated using cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic constant current charge–discharge (CD) techniques. The specific capacitance values followed similar trend with that of the cyclic voltammetry and the electrochemical impedance experiments and are slightly lower than values obtained using the galvanostatic charge–discharge cycling. MWCNT-NiO-based electrode gave best specific capacitance of 433.8 mF?cm?2 (ca 2,119 F?g?1) in H2SO4. The electrode exhibited high electrochemical reproducibility with no significant changes over 1,000 cyclic voltammetry cycles.  相似文献   

10.
In this work, CNT‐NiCo2O4 was first synthesized via a chemical strategy in order to fabricate the ternary nanocomposite of a p‐type conductive polymer. Subsequently, hybrid poly(o‐aminophenol) POAP/CNT‐NiCo2O4 ternary composite films were prepared via the electropolymerization of POAP in the presence of CNT‐NiCo2O4 to be used in electrochemical storage devices as the active electrode. Electrochemical analyses including galvanostatic charge–discharge experiments, cyclic voltammetry, and electrochemical impedance spectroscopy were conducted to study the system performance. Furthermore, surface analyses were carried out to characterize the POAP/CNT‐NiCo2O4 composite film. Novel nanocomposite materials with the merits of extraordinarily high active surface area, ease of fabrication, and superior stability in aqueous electrolytes are presented for use in electrochemical redox capacitors.  相似文献   

11.
Supercapacitor based on graphene and ionic liquid electrolyte   总被引:2,自引:0,他引:2  
A new kind of supercapacitor by using chemical reduced graphene (CRG) as electrode material and ionic liquid with addition of acetonitrile as electrolyte is assembled and investigated. CRG materials with high surface area are prepared by chemical reduction of graphene oxide. The capacitive properties of the supercapacitor composed of the CRG and ionic liquid electrolyte are studied by electrical impedance spectroscopy, cyclic voltammetry and galvanostatic charge–discharge. With the combined advantages of graphene and ionic liquid, the supercapacitor shows perfect performance. The supercapacitor possesses wide cell voltage and good stability. The specific capacitance, energy density, and specific power density of the present supercapacitor are 132?Fg??, 143.7?Wh?kg??, and 2.8?kW?kg??, respectively. The results demonstrate the potential application of electrical energy storage devices with high performance based on this new kind of supercapacitor.  相似文献   

12.
Supercapacitors, also called as ultracapacitors, are electrochemical energy-storage devices that exploit the electrostatic interaction between high-surface-area nanoporous electrodes and electrolyte ions, combining properties of conventional batteries and conventional capacitors. A symmetrical activated carbon (AC) electrode supercapacitor has been fabricated in a simple and inexpensive manner. The AC has been synthesized from Charcoal, has activated in a furnace at high temperatures. The electrode was fabricated by casting slurry made of AC and blended in a polymer solution on the counter electrode (current collector), appeared to have high mechanical strength. The electrochemical performance of the prepared samples was tested in 1 M KCl solution by cyclic voltammetry (CV), galvanostatic charge discharge technique, and impedance spectroscopy. The surface and cross-section of electrode was observed with SEM. Capacitance of fabricated supercapacitor has a favorable capacitance in the range of 65–70 F/g with low resistance. The AC electrode supercapacitor has excellent electro chemical reversibility, good cycle stability with a low fading rate of specific capacitance even after 500 cycles, which is promising for energy storage applications.  相似文献   

13.
The polyaniline (PANI) prepared by the pulse galvanostatic method (PGM) or the galvanostatic method on a stainless steel substrate from an aqueous solution of 0.5 mol/l H2SO4 with 0.2 mol/l aniline has been studied as an electroactive material in supercapacitors. The electrochemical performance of the PANI supercapacitor is characterized by cyclic voltammetry, a galvanostatic charge–discharge test and electrochemical impedance spectroscopy in NaClO4 and HClO4 mixed electrolyte. The results show that PANI films with different morphology and hence different capacitance are synthesized by controlling the synthesis methods and conditions. Owing to the double-layer capacitance and pseudocapacitance increase with increasing real surface area of PANI, the capacitive performances of PANI were enhanced with increasing real surface area of PANI. The highest capacitance is obtained for the PANI film with nanofibrous morphology. From charge–discharge studies of a nanofibrous PANI capacitor, a specific capacitance of 609 F/g and a specific energy density of 26.8 Wh/kg have been obtained at a discharge current density of 1.5 mA/cm2. The PANI capacitor also shows little degradation of capacitance after 1,000 cycles. The effects of discharge current density and deposited charge of PANI on capacitance are investigated. The results indicate that the nanofibrous PANI prepared by the PGM is promising for supercapacitors.  相似文献   

14.
以MoO3为基体,分别用超声分散法与碳纳米管(CNTs),化学原位聚合法与聚吡咯(PPy)复合,制备了MoO3/CNTs,MoO3/PPy和MoO3/CNTs/PPy纳米复合材料。利用XRD、SEM、TEM对复合材料进行物性表征,在1 mol·dm-3的HCl溶液中对MoO3,MoO3/CNTs,MoO3/PPy和MoO3/CNTs/PPy四个样品进行电化学测试。结果表明,复合材料的比容量均高于MoO3,其中,由于MoO3/PPy特殊的一维核壳结构使其具有较高的比表面积,相比较其他复合材料而言,有更好的电化学活性。该材料的最大比电容为450.8F·g-1。  相似文献   

15.

A new kind of supercapacitor by using chemical reduced graphene (CRG) as electrode material and ionic liquid with addition of acetonitrile as electrolyte is assembled and investigated. CRG materials with high surface area are prepared by chemical reduction of graphene oxide. The capacitive properties of the supercapacitor composed of the CRG and ionic liquid electrolyte are studied by electrical impedance spectroscopy, cyclic voltammetry and galvanostatic charge–discharge. With the combined advantages of graphene and ionic liquid, the supercapacitor shows perfect performance. The supercapacitor possesses wide cell voltage and good stability. The specific capacitance, energy density, and specific power density of the present supercapacitor are 132 Fg−1, 143.7 Wh kg−1, and 2.8 kW kg−1, respectively. The results demonstrate the potential application of electrical energy storage devices with high performance based on this new kind of supercapacitor.

  相似文献   

16.
石琴  门春艳  李娟 《物理化学学报》2013,29(8):1691-1697
以FeCl3-甲基橙(MO)为模板, 通过化学原位聚合法成功制备出氧化石墨烯/聚吡咯(GO/PPy)插层复合材料. 采用X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、扫描电镜(SEM)和透射电镜(TEM)等测试技术对复合材料进行物性表征. 此外, 利用循环伏安、恒电流充放电和交流阻抗测试方法对复合材料在两种不同水系电解液(1 mol·L-1 Na2SO4和1 mol·L-1 H2SO4)中的电化学性能进行了研究. 结果显示: 氧化石墨烯和聚吡咯表现出各自优势并发挥协同作用, 使得GO/PPy插层复合材料在中性和酸性电解液中都显示出可观的比电容. 电流密度为0.5 A·g-1时, GO/PPy 插层复合材料在Na2SO4和H2SO4电解液中的比电容分别为449.1 和619.0 F·g-1, 明显高于纯PPy的比电容. 经过800 次循环稳定性测试后, 两种不同电解液中, 复合材料初始容量的保持率分别为92%和62%. 其中酸性电解液体系中初始容量更大, 而中性溶液中具有更稳定的循环性能.  相似文献   

17.
This article reports the preparation and self‐assembly of polyaniline (PANI) nanotubes, which were chemically synthesized by using in situ doping polymerization in the presence of ammonium persulfate (APS; (NH4)S2O8) as the oxidant without the use of an external template. The synthesized hierarchically nanotubes with a shape of a single nanotube with a length of 0.6 to 0.8 µm and an average with of 100 nm assembled from nanoparticles. The effects of the [salicylic acid]/[aniline] ratio on the size and capacitance of PANI nanotubes were studied. The specific capacitance behavior of the PANI nanotubes was also investigated by using cyclic voltammogram and galvanostatic charge–discharge tests. A maximum discharge‐specific capacitance of 422.5 F/g could be achieved, suggesting its potential application in electrode material for electrochemical capacitors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Turbinaria turbinata brown seaweeds were tested as carbon electrode material in symmetric, electrochemical supercapacitors. The electrochemical properties of the carbon materials were characterised for their application as supercapacitors using cyclic voltammetry, galvanostatic charge/discharge method and electrochemical impedance spectroscopic analyses. Our initial results showed that the optimal behaviour was obtained for the sample prepared by pyrolysis at 800 °C. The average surface area of the carbon was 812 m2/g. Electrochemical tests with an organic electrolyte gave the following interesting results: a capacitance of 74.5 F/g, a specific series resistance of 0.5 Ω cm2 and an ionic resistivity of 1.3 Ω cm2. These results show the promising capacitive properties of carbon derived from seaweeds and their application in electrochemical supercapacitors.  相似文献   

19.
The copolymers were synthesized with different molar ratios of m-phenylenediamine to aniline (R for short) by a chemical oxidation method. The products were first used as electrochemical activity materials of the supercapacitor. Capacitive behaviors of the prepared copolymers in 1 mol·L−1 H2SO4 electrolyte were examined by electrochemical impedance spectroscopy, cyclic voltammeter, and galvanostatic charge/discharge. The relationship of molar ratios with capacitive property of the prepared products was investigated too. The results showed that the product with R of 2:98 displayed better electrochemical properties than that of the other products. Compared with the synthesized polymer in the absence of m-phenylenediamine, the polymerized copolymer with R of 2:98 exhibited the initial specific capacitance value of 475 F·g−1, which increased by nearly 10.1% than that of the former at a current density of 200 mA·g−1 in 1 mol·L−1 H2SO4 electrolyte in the potential range of −0.3 to 0.7 V. The discharge specific capacitance value of the copolymer remained 300 F·g−1 after 1,000 cycles, exhibiting a good cycling performance and the structure stability.  相似文献   

20.
We report a supramolecular strategy to prepare conductive hydrogels with outstanding mechanical and electrochemical properties, which are utilized for flexible solid‐state supercapacitors (SCs) with high performance. The supramolecular assembly of polyaniline and polyvinyl alcohol through dynamic boronate bond yields the polyaniline–polyvinyl alcohol hydrogel (PPH), which shows remarkable tensile strength (5.3 MPa) and electrochemical capacitance (928 F g?1). The flexible solid‐state supercapacitor based on PPH provides a large capacitance (306 mF cm?2 and 153 F g?1) and a high energy density of 13.6 Wh kg?1, superior to other flexible supercapacitors. The robustness of the PPH‐based supercapacitor is demonstrated by the 100 % capacitance retention after 1000 mechanical folding cycles, and the 90 % capacitance retention after 1000 galvanostatic charge–discharge cycles. The high activity and robustness enable the PPH‐based supercapacitor as a promising power device for flexible electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号