首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
We have demonstrated a facile approach for fabricating graphene quantum dots–TiO2 (GQDs–TiO2) nanocomposites by a simple physical adsorption method. Compared with pure GQDs and TiO2 nanoparticles (NPs), the as-prepared GQDs–TiO2 nanocomposites showed enhanced photoelectrochemical (PEC) signal under visible-light irradiation. The photocurrent of GQDs–TiO2/GCE was nearly 30-fold and 12-fold enhancement than that of GQDs/GCE and TiO2/GCE, respectively, which was attributed to the synergistic amplification between TiO2 NPs and GQDs. More interestingly, the photocurrent of GQDs–TiO2 nanocomposites was selectively sensitized by dopamine (DA), and enhanced with the increasing of DA concentration. Further, a new PEC methodology for ultrasensitive determination of DA was developed, which showed linearly enhanced photocurrent by increasing the DA concentration from 0.02 to 105 μM with a detection limit of 6.7 nM (S/N = 3) under optimized conditions. This strategy opens up a new avenue for the application of GQDs-based nanocomposites in the field of PEC sensing and monitoring.  相似文献   

2.
A self-assembled functionalized metal-organic framework, Zn4O(NH2BDC)3 microcrystalline (IRMOF3) could be prepared by washing complex with DMF and CH2Cl2. Via modification with sodium alginate (AA), IRMOF3-AA samples could be obtained. IR and TEM were used for structural confirmation of IRMOF3-AA samples. PEG-GOD could be obtained via PEGylation of glucose oxidase (GOD), which could be confirmed by X-ray photoelectron spectroscopy (XPS) and used for further application. IRMOF3-AA@PEG-GOD samples could be obtained by the immobilization of PEG-GOD to IRMOF3-AA, and the best immobilization condition was achieved by adjusting the amount of GOD. From the view point of enzyme mimics, combined with peroxidase-like properties of the IRMOFS-AA samples, the determination of glucose was demonstrated with a linear range from 5?×?10?5 mol/L to 1.6?×?10?3 mol L?1 using tetramethylbenzidine (TMB) as chromogenic substrate. The prepared IRMOF3-AA@PEG-GOD samples exhibited dual functional enzyme-like (peroxidase and GOD-like) activities, with simple experimental steps.

  相似文献   


3.
Newly designed 2H‐benzimidazole derivatives which have solubility groups at 2‐position have been synthesized and incorporated into two highly soluble carbazole based alternating copolymers, poly[2,7‐(9‐(1′‐octylnonyl)‐9H‐carbazole)‐alt‐5,5‐(4′,7′‐di(thien‐2‐yl)‐2H‐benzimidazole‐2′‐spirocyclohexane)] (PCDTCHBI) and poly[2,7‐(9‐(1′‐octylnonyl)‐9H‐carbazole)‐alt‐5,5‐(4′,7′‐di(thien‐2‐yl)‐2H‐benzimidazole‐2′‐spiro‐4′′‐((2′′′‐ethylhexyl)oxy)‐cyclohexane)] (PCDTEHOCHBI) for photovoltaic application. These alternating copolymers show low‐band gap properties caused by internal charge transfer from an electron‐rich unit to an electron‐deficient moiety. HOMO and LUMO levels are –5.53 and –3.86 eV for PCDTCHBI, and –5.49 and –3.84 eV for PCDTEHOCHBI, respectively. Optical band gaps of PCDTCHBI and PCDTEHOCHBI are 1.67 and 1.65 eV, respectively. The new carbazole based the 2H‐benzimidazole polymers show 0.11–0.13 eV lower values of band gaps as compared to that of carbazole based benzothiadiazole polymer, poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PCDTBT), while keeping nearly the same deep HOMO levels. The power conversion efficiencies of PCDTCHBI and PCDTEHOCHBI blended with [6,6]phenyl‐C71‐butyric acid methyl ester (PC71BM) are 1.03 and 1.15%, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
We have developed green, efficient and powerful protocols for the preparation of 2,4,6‐triarylpyridines and 1,8‐dioxodecahydroacridines in the presence of Fe3O4@TiO2@O2PO2(CH2)2NHSO3H as a sulfonic acid‐functionalized titana‐coated magnetic nanoparticle catalyst under mild and solvent‐free reaction conditions. These protocols furnished the desired products in short reaction times with good to high yields (20–40 min and 80–86% in the case of 2,4,6‐triarylpyridines; 15–90 min and 80–93% in the case of 1,8‐dioxodecahydroacridines). The final step of the mechanistic route in the synthesis of 2,4,6‐triarylpyridines proceeds via an anomeric‐based oxidation. Also, the nanomagnetic core–shell catalyst can be recycled and reused in both cases of the scrutinized one‐pot multicomponent reactions with high turnover number and turnover frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号