首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
TiO2 thin films were deposited on ITO/Glass substrates by the rf magnetron sputtering in this study. The electrochromic properties of TiO2 films were investigated using cyclic voltammograms (CV), which were carried out on TiO2 films immersed in an electrolyte of 1 M LiClO4 in propylene carbonate (PC). As- deposited TiO2 thin film was amorphous, while the films post-annealed at 300~600°C contained crystallized anatase and rutile. With the increase of the annealing temperature, the surface roughness of film increased from 1.232 nm to 1.950 nm. Experimental results reveal that the processing parameters of TiO2 thin films will influence the electrochromic properties such as transmittance, ion-storage capacity, inserted charge, optical density change, coloration efficiency and insertion coefficient.  相似文献   

3.
In this study, a novel poly[Styrene (ST)-co-Glycidyl Methacrylate (GMA)] copolymer material is used to fabricate Langmuir-Blodgett (LB) thin films and investigate organic vapor sensing properties. Quartz Crystal Microbalance (QCM) system is used to investigate gas sensing performance of copolymer LB films during exposure to Volatile Organic Compounds (VOCs). The poly[Styrene (ST)-co-Glycidyl Methacrylate (GMA)] LB thin film sensor sensitivities are determined to be between 0.12 and 0.25 Hz ppm?1. Detection limits of the copolymer LB thin film are found to be between 23 and 49 ppm against organic vapors. The copolymer LB thin films are more sensitive to chloroform than other vapors used in this study. The results demonstrated that the poly[Styrene (ST)-co-Glycidyl Methacrylate (GMA)] copolymer material is promising as a organic vapor sensing device at room temperature.  相似文献   

4.
Copper‐tin thin films (CT TFs) were deposited on p‐type Si(100) by radio frequency (RF) magnetron co‐sputtering method. The atomic ratio of Cu and Sn showed complementary tendency with various RF powers on metal targets. Antibacterial test was conducted with Gram‐negative Escherichia coli. The ratio of Cu and Sn ions and the contact time with E. coli affected the antibacterial efficiency. Increasing the ratio of Cu ions and contact time showed higher antibacterial activity. Cu20Sn6 called as bronze structure, metallic Cu, and copper oxide phases were identified from X‐ray diffraction data after sterilization. The lattice strain that was changed due to the substitution of Cu and Sn was also calculated. The surface morphology of CT TFs was entirely grown to round shape when the dominant element was Sn. But, as the content of Cu increased, the surface morphology was changed from ball shape to sharp column shape. When fixed contact time, the intensities of Cu 2p increased but the intensities of Sn 3d decreased as increasing the atomic ratio of Cu. The oxidation of Cu was more sharply progressed as the RF power on Cu target increased. When fixed CT TFs, the intensities of Cu 2p were consistent but the intensities of Sn 3d3/2 decreased as increasing contact time between CT TF and E. coli.  相似文献   

5.
Influence of post-annealing temperature on properties of ZnO:Li thin films   总被引:4,自引:0,他引:4  
Li-doped ZnO thin films were prepared on glass substrates by DC reactive magnetron sputtering. The influence of post-annealing temperature on the electrical, structural, and optical properties of the films was investigated. A conversion from p-type conduction to n-type in a range of temperature was confirmed by Hall measurement. The optimal p-type conduction is achieved at the annealing temperature of 500 °C with a resistivity of 57 Ω cm, carrier concentration of 1.07 × 1017 cm−3 and Hall mobility of 1.03 cm2 V−1 s−1. From the temperature-dependent PL analysis, the energy level of LiZn acceptor was determined to be 140 meV above the valence band.  相似文献   

6.
The surface morphologies of CaF2 thin films prepared by electron beam evaporation technique were measured by atomic force microscopy. The films were bombarded by energetic ion beams of different fluences, which modified the surface morphology predominantly via the process of erosion. The dependence of the surface morphology on ion fluence was explored using multifractal analysis. It was found that the roughness of the film first decreased with ion fluence but increased at higher fluences. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Zinc acetate derived precursor used in the present sol-gel synthesis of zinc oxide nanoparticles is described. The reaction product obtained before and after reflux of propanolic zinc acetate solution have been studied by UV-vis, photoluminescence and FT-IR studies which confirm the formation of oligomeric precursor Zn4O(Ac)6 (Ac=CH3COO). The formation of approximately 7 nm zinc oxide nanoparticles were confirmed by X-ray diffraction (XRD) and Transmission electron microscopic studies (TEM). The gaseous ammonia gas sensing characteristics of the nano-zinc oxide sensor showed high sensitivity compared to sensor fabricated with commercial zinc oxide powder.  相似文献   

8.
9.
Nanocrystalline tantalum nitride (TaN) thin films have been deposited by reactive direct current magnetron sputtering technique on Si/SiO2 (100) substrate with nitrogen flow rate ranging from 0, 3, 5, 7, 9 to 11 standard cubic centimeter per minute (sccm). Structural properties, surface morphology, chemical composition and and resistivity of the TaN films were investigated by X‐ray diffraction (XRD), field emission scanning electron microscopy, X‐ray photoemission spectroscopy (XPS) and four‐point probe measurements, respectively. In the XRD spectra, a classical formation sequence of tantalum nitride phases in the order of Ta‐Ta2N‐TaN‐Ta4N5 and decreasing amount of metallic Ta were observed with increasing nitrogen flow. The electrical resistivity of the TaN film was found to increase with increasing N/Ta ratio as a result of the increased electron scattering from interstitial N atoms. In the XPS analysis, two groups of Ta4f doublets relating to different TaN phases were observed in the core level spectra of TaN films. No strong coupling was observed between the Ta4f doublets and the Ta4p and the N1s groups. The appropriate nitrogen flow was believed to be helpful in the bonding and formation of stoichiometric TaN. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
ZnO thin films were deposited onto glass subsrates by a Sol-gel spin coating method. The structural and optical properties of ZnO thin films were investigated. The molar ratios of the zinc acetate dihydrate to Monoethanolamine were maintained 1:1. The as-grown film was sintered 250 °C for 10 min, then annealed in air at 500 °C for 30 min. The XRD results indicate that ZnO films were strongly oriented to the c-axis of the hexagonal nature. Absorption measurements were carried out as a function of temperature with 10 K steps in the range 10–320 K. The band gap energy was measured 3.275 and 3.267 eV for 0.5 and 1.0 molarity (M) ZnO thin films at 300 K. The steepness parameters were observed between 10 and 320 K and their extrapolations converged at (E0, α0) = 3.65 eV, 172,819 cm−1 and 3.70 eV, 653,436 cm−1 for 0.5 and 1.0 M ZnO thin films, respectively.  相似文献   

11.
12.
Plasma-polymerized hexamethyldisiloxane (pp-HMDSO) thin films have been deposited in a radiofrequency (RF) remote plasma-enhanced chemical vapor deposition (PECVD) system, on different types of substrates: silicon wafers, glass, quartz crystals, and chemiresistor structure. The as-grown thin films have been post treated in two types of reactive plasmas produced in SF6 and O2 gases. The effect of this surface modification on different properties of the as-grown pp-HMDSO thin film (chemical structure, elemental composition, surface morphology, film density and thickness, optical bandgap, and electrical resistivity) has been investigated. It is found that SF6 plasma and O2 plasma surface modifications of the as-grown pp-HMDSO thin film induce property changes different from each other. SF6 plasma converted the as-grown pp-HMDSO film to a more porous material and caused a narrowing of its optical band gap of about 33%, while O2 plasma induced a lowering of film electrical resistivity of about two orders of magnitude.  相似文献   

13.
The effect of post‐deposition annealing on surface morphology and gas sensing properties of palladium phthalocyanine (PdPc) nanostructured thin films has been studied. PdPc thin films were deposited on polyborosilicate substrate by thermal evaporation technique at room temperature. The surface morphology of thin films was investigated by SEM, X‐ray diffraction, and optical absorption. X‐ray diffraction patterns showed a phase transition from α to β based on post‐deposition annealing at temperatures above 200 °C. The SEM and optical absorption confirmed that annealing strongly influenced the surface morphology of nanostructured thin films. Sandwich devices (Au|PdPc|Al) were fabricated and exposed to different concentrations of NO2 and NH3 as oxidizing and reducing gases at different temperatures, and the sensitivity of devices were obtained versus gases. Obtained results showed α‐PdPc thin film devices had higher sensitivity in comparison with devices in β‐phase. In particular, it was found that the sensitivity of devices is temperature dependent and the best operating temperature range of devices was measured at about 90–100 °C. Devices showed good reversibility, response, and recovery time at room temperature. Finally, the stability of sensors was investigated for a period of about 1 year; results showed that the sensors were stable for 2 months and lost about 30% of their sensitivity after 1 year. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
R.S. Khadayate 《Talanta》2007,72(3):1077-1081
This paper presents acetone vapor sensing properties of WO3 thick films. In this work, the WO3 thick films were prepared by standard screen-printing method. These films were characterized by X-ray diffraction (XRD) measurements, and scanning electron microscopy (SEM). The acetone vapor sensing properties of these thick films were investigated at different operating temperature and acetone vapor concentrations. The WO3 thick films exhibit excellent acetone vapor sensing properties with the maximum sensitivity ∼456% at 300 °C in air atmosphere with fast response and recovery time.  相似文献   

15.
Vapor deposition polymerized (VDP) polyimide (PI) thin films were prepared and characterized by using thermogravimetrical analysis (TGA), scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR), and bending-beam techniques. The film properties investigated were thermal stability, wet-etching characteristics, surface topology, imidization characteristics, internal stress upon curing and thermal cycling, and hygroscopic stress upon moisture diffusion. Markedly different characteristics are observed for the VDP-PI films when comparing with the conventional ones. They seem denser in film structure and have better mechanical properties, but are somewhat less stable in thermal resistance. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
In this study, effects of induced stress and strain on the thermoelectric properties of mesoporous ZnO thin films with various Al doping concentrations were investigated. With Al doping in ZnO structure, the hexagonal wurtzite structure of ZnO was distorted owing to an ionic size difference between Al and Zn. With an increase in Al concentration to 4 at%, thermal conductivity unexpectedly decreased from 1.70 to 1.24 W/mK owing to an increase in the tensile strain, and electrical conductivity increased from 4 S/cm to 15 S/cm owing to an increase in the carrier concentration. Based on this study, the relationship between the induced strain owing to lattice distortion and thermoelectric properties was investigated. Thus, 4 at% Al-doped mesoporous ZnO demonstrated best enhanced thermoelectric properties.  相似文献   

17.
Titanium carbide (TiC) thin films were deposited on D9 steel substrates at room temperature (RT), 200 °C and 400 °C. A compound TiC target was sputtered to deposit films in a non‐reactive argon atmosphere. As‐deposited films were characterised for structural, chemical and mechanical properties. Nanoindentation and scratch tests were performed to evaluate the cohesive and adhesive strength of the films, respectively. Tribological properties of the films were investigated using a tribometer. An increase in nano‐hardness from 7.2 to 10.5 GPa was observed as deposition temperature was increased. The films deposited at RT and 200 °C showed poor adhesion leading to the inferior tribological performance. In contrast, films deposited at 400 °C showed better adhesion which improved the wear resistance. Tribological behaviour of TiC thin films was correlated with contact deformation modes of coatings. These modes revealed significant role of adhesive and cohesive strength associated with the coatings. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Films of monolayer protected Au clusters (MPCs) with mixed alkanethiolate and omega-carboxylate alkanethiolate monolayers, linked together in a network polymer by carboxylate-Cu2+-carboxylate bridges, exhibit electronic conductivities (sigma(EL)) that vary with both the numbers of methylene segments in the ligands and the bathing medium (N2, liquid or vapor). A chainlength-dependent swelling/contraction of the film's internal structure is shown to account for changes in sigma(EL). The linker chains appear to have sufficient flexibility to collapse and fold with varied degrees of film swelling or dryness. Conductivity is most influenced (exponentially dependent) by the chainlength of the nonlinker (alkanethiolate) ligands, a result consistent with electron tunneling through the alkanethiolate chains and nonbonded contacts between those chains on individual, adjacent MPCs. The sigma(EL) results concur with the behavior of UV-vis surface plasmon adsorption bands, which are enhanced for short nonlinker ligands and when the films are dry. The film conductivities respond to exposure to organic vapors, decreasing in electronic conductivity and increasing in mass (quartz crystal microgravimetry, QCM). In the presence of organic vapor, the flexible network of linked nanoparticles allows for a swelling-induced alteration in either length or chemical nature of electron tunneling pathways or both.  相似文献   

19.
20.
Photoinduced hydrophilicity of heteroepitaxially grown ZnO thin films   总被引:2,自引:0,他引:2  
Single crystalline ZnO thin films were heteroepitaxially grown on sapphire substrates by rf-magnetron sputtering. The ZnO films on sapphire A and C face were oriented along the (0001) direction, whereas the ZnO film on sapphire R face was oriented along the (11-20) direction. The rate of photoinduced hydrophilic conversion strongly depended on the surface crystal structure. The ZnO film oriented along the (11-20) direction exhibited a higher hydrophilicizing rate than those oriented along the (0001) direction. The high hydrophilicizing rate of the ZnO oriented along the (11-20) direction is due to its surface atomic arrangement. The outermost layer of the ZnO surface of the (11-20) face contains oxygen ions, which are considered to be energetically reactive sites and responsible for the hydrophilic conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号