共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrasound assisted aqueous two-phase extraction of polysaccharides from Cornus officinalis fruit was modeled by response surface methodology (RSM) and artificial neural network (ANN), and optimized using genetic algorithm coupled with ANN (GA-ANN). Statistical analysis showed that the models obtained by RSM and ANN could accurately predict the Cornus officinalis polysaccharides (COPs) yield. However, ANN prediction was more accurate than RSM. The optimum extraction parameters to achieve the highest COPs yield (7.85 ± 0.09)% was obtained at the ultrasound power of 350 W, extraction temperature of 51 ℃, liquid-to-solid ratio of 17 mL/g, and extraction time of 38 min. Subsequently, the crude COPs were further purified via DEAE-52 and Sephadex G-100 chromatography to obtain a homogenous fraction (COPs-4-SG, 33.64 kDa) that contained galacturonic acid, arabinose, mannose, glucose, and galactose in a molar ratio of 34.82:14.19:6.75:13.48:12.26. The structure of COPs-4-SG was also characterized with UV–vis, fourier-transform infrared spectroscopy (FT–IR), atomic force microscopy (AFM), scanning electron microscopy (SEM), Congo-red test, and circular dichroism (CD). The findings provide a feasible way for the extraction, purification, and optimization of polysaccharides from plant resources 相似文献
2.
《Ultrasonics sonochemistry》2014,21(4):1424-1429
A metal–organic framework MOF-5 has been synthesized on silk fiber through electrostatic layer-by-layer assembly. The silk surface coating was formed via sequential dipping in an alternating bath of metal and ligand solutions at room temperature by direct mixing. SEM was used to investigate the growth of MOF-5 coating as materials for separation membrane due to their desirable properties in adsorptive removal of congo red (CR) from contaminated water. The adsorption capacity of MOF-5 is remarkable high in the liquid phase. The adsorption of CR at various concentration and contact time in spontaneous process were studied. The silk fibers containing MOF-5 open a wide field of possible applications, such as protection layers or membranes in pollution remediation wastewater and any effluent. Desorption of the dye can be carried out by using NaOH solution with more than about 50% recovery of congo red from MOF-5 coated on silk membrane filtration. In order to investigate the role of sonicating on the morphology of products, one of the reactions was performed with ultrasound irradiation and the crystal growth is completed more than other methods. The samples and adsorption of CR were characterized with SEM, powder X-ray diffraction (XRD) and UV–visible spectroscopy. 相似文献
3.
Ultrasonication is an emerging and evergreen technique for the efficient synthesis of the catalytically active heterostructured materials. In-situ one-pot ultrasonic-assisted synthesis method was demonstrated in this work for the fabrication of silver tungstate encrusted polypyrrole nanocomposite using semi-automatic ultrasonic probe maintained at 34°C/50 kHz ultrasonic frequency and at 150 W ultrasonic power. This material retains enhanced optical, electrical, morphological properties, photocatalytic behavior in photodegradation of congo red dye, tetracycline drug and its electrochemical sensing potential for the effective determination of a broad spectrum of antibacterial drug, nitrofurazone. Optical properties were investigated using UltraViolet–Visible diffuse reflectance spectral (UV–VIS DRS) data along with Tauc’s bandgap energy calculations. The morphological properties were examined using FESEM and TEM micrographs. All the PXRD and XPS details prove the effective distribution of PPy on the surface of Ag2WO4 rods with the help of powerful ultrasonic assistance. PPy acted as a support for nucleation and growth of Ag2WO4 and an inhibitor of phase transformations. Ag2WO4/PPy exhibits great photocatalytic behavior while comparing with pure PPy and Ag2WO4 in the degradation of carcinogenic dye congo red and antibiotic drug tetracycline. In addition to that, Ag2WO4/PPy modified GCE exposed a widespread linear range from 0.1 to 107 µM along with a very low detection limit of 12 nM and huge sensitivity of 1.74 µA µM−1cm−2 in the electrochemical determination of nitrofurazone. 相似文献
4.
《Journal of Raman spectroscopy : JRS》2017,48(4):507-517
An extremely stable hybrid composite, useable as a pigment in the Cultural Heritage and Materials Science fields, can be obtained by grinding and heating 2 wt% methyl red with palygorskite, a fibrous microporous clay mineral. Dye molecules are incorporated within the clay nanotunnels and/or superficial grooves, partly sheltered from the external environment and forming specific host–guest interactions that stabilize the composite. The molecular structure and surrounding interactions of the encapsulated methyl red molecules were studied by means of Fourier transform (FT) and surface‐enhanced Raman (SER) Spectroscopies – useful techniques to analyze adsorbates even at very low concentrations. Comparison between Fourier transform and SER spectra of the pristine dye and the hybrid composite shows that methyl red exists, after encapsulation in palygorskite, in its neutral (azo) and protonated (hydrazo) forms, both with planar morphology. Incorporation in the host framework favours significant transformation of the guest dye molecule from the azo to the hydrazo species, consistently with the composite synthesis being performed in acidic environment. The incidental addition of plasmonic substrates, used in SER spectra to enhance the Raman signal, further accentuates this conversion. Diffusion in the clay nanotunnels is expected to cause moderate ring deformations/distortions in the methyl red molecule, as reflected by the perturbation of selected Raman modes. The details about the specific orientations and interactions of the dye with the Ag colloid are discussed, as well as their effects on the Raman signal enhancement. Although a feasible quantification of their mutual amounts is impracticable, because of the too many variables involved, presence of several dye species in the host framework, each contributing to the nanocomposite colour, qualifies the studied complex as a polyfunctional organic/inorganic hybrid composite. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
5.
6.
脱氧核糖核酸与刚果红化学反应的机理研究 总被引:3,自引:2,他引:1
采用UV-Vis光谱法,研究了在pH 4.56的Tris缓冲溶液中脱氧核糖核酸(DNA)与刚果红(GGH)相互作用。生成的紫色配合物最大吸光度差ΔA在600 nm,反应前后吸收光谱变化明显,反应体系对比度好。在此波长下测得配合物的表观摩尔吸光系数ε=1.41×105 L·cm-1·mol-1,最大结合数n=32,最低检出限为c=8.04×10-8 mol·L-1 等。研究了体系的酸度、温度、时间等基本反应条件,以及不同类型物质对反应体系的干扰状况。离子强度的改变对体系的吸光度有一定影响。探讨了小分子物质与DNA作用的方式及二者的分子结构、分子构象及电子云分布之间的关系。 相似文献
7.
The extracting technology including ultrasonic and microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomato paste were optimized and compared. The results showed that the optimal conditions for UMAE were 98 W microwave power together with 40 KHz ultrasonic processing, the ratio of solvents to tomato paste was 10.6:1 (V/W) and the extracting time should be 367 s; as for UAE, the extracting temperature was 86.4 °C, the ratio of the solvents to tomato paste was 8.0:1 (V/W) and the extracting time should be 29.1 min, while the percentage of lycopene yield was 97.4% and 89.4% for UMAE and UAE, respectively. These results implied that UMAE was far more efficient extracting method than UAE. 相似文献
8.
9.
A quaternary CuO–CuS–ZnO–ZnS nanocomposite was successfully synthesized via a facile microwave irradiation based on the preprepared ZnS and CuO nanoparticles. CuO–CuS–ZnO–ZnS nanocomposite was a porous photocatalyst, providing excellent adsorption performance. It was sensitive to both ultraviolet and visible light, moreover, the photoelectrochemical measurements confirmed that there was a high separation rate and low recombination rate of photo-generated charge carriers in the nanocomposite, endowing excellent photocatalytic activity in the sunlight. Under the simulated solar light irradiation, the removal efficiency of rhodamine B (RhB) pollutant (30 mg/L) over CuO–CuS–ZnO–ZnS nanocomposite was 33.98 and 2.90 times of pristine CuO and ZnS, respectively. The outstandingt photocatalytic performance was attributed to Z-scheme charge transfer path. 相似文献
10.
Jie Yang;Zhengkun Cai;Dong Li; 《physica status solidi (a)》2024,221(12):2300874
In this experiment, ZSM-5 molecular sieves are prepared by hydrothermal synthesis and modified by impregnation with Fe, La, and Ce loading. X-ray diffraction, X-ray photon-electron spectroscopy, and scanning electron microscopy show that Fe, La, and Ce elements are successfully loaded onto the surface of the material, and the surface area of Fe-La-Ce-ZSM-5 is 241.66 m2 g−1. A systematic study on the adsorption of Congo red solution is carried out using Fe-La-Ce-ZSM-5 molecular sieves and it is found through the adsorption data that the adsorption process is more in line with Langmuir and the proposed second-order kinetic model, and the theoretical saturated adsorption capacity is 2669.19 mg g−1. The adsorption process is recycled four times and still has more than 60 % removal performance for high-concentration Congo red solution. The results of this experiment show that Fe-La-Ce-ZSM-5 molecular sieves show excellent removal performance for Congo red dye in wastewater. 相似文献
11.
Congo red (CR) is an azo dye which not only preferentially binds to elastin, an extracellular matrix protein found in the media of arterial vessel walls, but also fluoresces when it binds to this protein. Protein solubilization data following laser irradiation of elastin:CR suspensions determined that the amount of elastin solubilized by laser irradiation increased with the increase in CR. The saturation point of CR to elastin was attained when 400 g CR was added to 20 mg elastin suspension. When 20 ml of a 5% CR solution in 5% dextrose was administered intravenously, the CR was absorbed in levels sufficient to produce fluorescence of the main arteries in rabbits. Layers of tissue both in the media of the vessels and at the endothelial/intimal interface were clearly differentiated. Therefore, the elastin:CR complex appears to be an ideal system in which the elastin fluorescence could aid in distinguishing between normal and diseased tissue in certain pathological conditions, such as atherosclerosis and some types of breast tumors. 相似文献
12.
In the present work, chitin suspensions after enzymolysis and sonoenzymolysis were taken as adsorbents to evaluate the adsorption properties of Congo red (CR) dyes. Compared with untreated chitin suspension, the CR adsorption performance was significantly improved after enzymolysis and even more after sonoenzymolysis. According to different adsorption kinetic and isotherm models, Langmuir isotherm and the pseudo-second order model were more reliable to describe the adsorption process of CR onto different chitin samples and demonstrated a monolayer and favorable physisorption process. What’s more, negative values of ΔG (Gibbs free energy change) and the shifts to higher negative values with the temperature increasing from adsorption thermodynamic study proved a spontaneous CR adsorption process. The structural characterization before and after adsorption further verified the physical adsorption between chitin and CR, and a larger specific area and higher porosity of chitin suspension was obtained after sonoenzymolysis with more available active sites. 相似文献
13.
Four factors three level face centered central composite response surface design was employed in this study to investigate and optimize the effect of process variables (liquid-solid (LS) ratio (10:1–20:1 ml/g), pH (1−2), sonication time (15–30 min) and extraction temperature (50–70 °C)) on the maximum extraction yield of pectin from waste Artocarpus heterophyllus (Jackfruit) peel by ultrasound assisted extraction method. Numerical optimization method was adapted in this study and the following optimal condition was obtained as follows: Liquid-solid ratio of 15:1 ml/g, pH of 1.6, sonication time of 24 min and temperature of 60 °C. The optimal condition was validated through experiments and the observed value was interrelated with predicted value. 相似文献
14.
This research investigated the structural characteristics and enzymolysis kinetics of rice protein which was pretreated by energy-gathered ultrasound and ultrasound assisted alkali. The structural characteristics of rice protein before and after the pretreatment were performed with surface hydrophobicity and Fourier transform infrared (FTIR). There was an increase in the intensity of fluorescence spectrum and changes in functional groups after the pretreatment on rice protein compared with the control (without ultrasound and ultrasound assisted alkali processed), thus significantly enhancing efficiency of the enzymatic hydrolysis. A simplified kinetic equation for the enzymolysis model with the impeded reaction of enzyme was deduced to successfully describe the enzymatic hydrolysis of rice protein by different pretreatments. The initial observed rate constants (Kin,0) as well as ineffective coefficients (kimp) were proposed and obtained based on the experimental observation. The results showed that the parameter of kin,0 increased after ultrasound and ultrasound assisted alkali pretreatments, which proved the effects of the pretreatments on the substrate enhancing the enzymolysis process and had relation to the structure changes of the pretreatments on the substrate. Furthermore, the applicability of the simplified model was demonstrated by the enzymatic hydrolysis process for other materials. 相似文献
15.
An ultrasound assisted method was investigated to extract bioactive compounds from propolis. This method was based on a simple ultrasound treatment using ethanol as an extraction medium to facilitate the disruption of the propolis cells. Four different variables were chosen for determining the influence on the extraction efficiency: ultrasonic amplitude, ethanol concentration, temperature and time; the variables were selected by Box-Behnken design experiments. These parameters were optimised in order to obtain the highest yield, and the results exhibited the optimum conditions for achieving the goal as 100% amplitude of ultrasonic treatment, 70% solvent concentration, 58 °C and 30 min. The extraction yield under modified optimum extraction conditions was, as follows: 459.92 mg GAE/g of TPC, 220.62 mg QE/g of TFC and 1.95% of balsam content. The results showed that the ultrasound assisted extraction was suitable for bioactive compounds extraction from propolis. The most abundant phenolic compound was kaempferol (228.8 mg/g propolis) followed by myricetin (115.5 mg/g propolis), luteolin (27.2 mg/g propolis) and quercetin (25.2 mg/g propolis). 相似文献
16.
This study investigates the potential use of bael shell carbon (BSC) as an adsorbent for the removal of congo red (CR) dye from aqueous solution. The effect of various operational parameters such as contact time, temperature, pH, and dye concentration were studied. The adsorption kinetics was modeled by first-order reversible kinetics, pseudo-first-order kinetics, and pseudo-second-order kinetics. The dye uptake process obeyed the pseudo-second-order kinetic expression at pH 5.7, 7 and 8 whereas the pseudo-first-order kinetic model was fitted well at pH 9. Langmuir, Freundlich and Temkin adsorption models were applied to fit adsorption equilibrium data. The best-fitted data was obtained with the Freundlich model. Thermodynamic study showed that adsorption of CR onto BSC was endothermic in nature and favorable with the positive ΔH° value of 13.613 kJ/mol. 相似文献
17.
In this work, ultrasound-assisted adsorption of an anionic dye, sunset yellow (SY) and cationic dyes, malachite green (MG), methylene blue (MB) and their ternary dye solutions onto Cu@ Mn-ZnS-NPs-AC from water aqueous was optimized by response surface methodology (RSM) using the central composite design (CCD). The adsorbent was characterized using Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX) and EDX mapping images. The effects of various parameters such as pH, sonication time, adsorbent mass and initial concentrations of SY, MG and MB were examined. A total 33 experiments were conducted to establish a quadratic model. Cu@ Mn-ZnS-NPs-AC has the maximum adsorption efficiency (>99.5%) when the pH, sonication time, adsorbent mass and initial concentrations of SY, MG and MB were optimally set as 6.0, 5 min, 0.02 g, 9, 12 and 12 mg L−1, respectively. Sonication time has a statistically significant effect on the selected responses. Langmuir isotherm model was found to be best fitted to adsorption and adsorption capacities were 67.5 mg g−1 for SY, 74.6 mg g−1 for MG and 72.9 mg g−1 for MB. Four kinetic models (pseudo-first order, pseudo-second order, Weber–Morris intraparticle diffusion rate and Elovich) were tested to correlate the experimental data and the sorption was fitted well with the pseudo-second order kinetic model. 相似文献
18.
This study presents a state-of-the-art overview on the application of ultrasound technology in the drying of food products, including the ultrasound pre-treatment and ultrasound assisted drying. The effect of main parameters and ultrasound technology on the drying kinetics and food quality were discussed. Inconsistencies were pointed out and analyzed in detail. Results showed that for ultrasound pre-treatment, the food products may lose or gain water and increase of ultrasonic parameters (sonication time, amplitude and ultrasound power) promoted the water loss or water gain. When ultrasound technology was applied prior to drying, an increase in drying kinetics was always observed, though some different results were also presented. For ultrasound assisted drying, the ultrasound power always gave a positive effect on the drying process, however, the magnitude of ultrasound improvement was largely dependent on the process variables, such as air velocity, air temperature, microwave power and vacuum pressure, etc. The application of ultrasound technology will somehow affect the food quality, including the physical and chemical ones. Generally, the ultrasound application can decrease the water activity, improve the product color and reduce the nutrient loss. 相似文献
19.
采用FTIR及XRD对硬脂酸稀土稳定剂进行结构表征 ,可知硬脂酸稀土中硬脂酸酸根与稀土离子间的作用主要是离子键性质的 ,且硬脂酸稀土具有层状晶体结构 ,晶层中稀土离子倾斜于基面。刚果红法测定结果表明 ,随着硬脂酸稀土用量增加 ,PVC的热稳定时间呈现增加的趋势 ,4种不同稀土硬脂酸盐稳定能力大小顺序为Last>Ndst>Yst>Dyst。通过FTIR对PVC稀土稳定体系稳定机理进行预测 ,结果表明Last和Ndst两种稀土稳定剂能取代不稳定的Cl原子 ,阻止PVC分子链上脱HCl反应 ,改变构象使其达到稳定的效果。Yst和Dyst在改变构象方面贡献较不明显。 相似文献
20.
Nano-sized magnetic Fe0/polyaniline (Fe0/PANI) nanofibers were used as an effective material for sonocatalytic degradation of organic anionic Congo red (CR) dye. Fe0/PANI, was synthesized via reductive deposition of nano-Fe0 onto the PANI nanofibers at room temperature. Prepared catalyst was characterized using HR-TEM, FE-SEM, XRD, FTIR instruments. The efficacy of catalyst in removing CR was assessed colorimetrically using UV–visible spectroscopy under different experimental conditions such as % of Fe0 loading into the composite material, solution pH, initial concentration of dye, catalyst dosage, temperature and ultrasonic power. The optimum conditions for sonocatalytic degradation of CR were obtained at catalyst concentrations = 500 mg.L−1, concentration of CR = 200 ppm, solution pH = neutral (7.0), temperature = 30 °C, % of Fe0 loading = 30% and 500 W ultrasonic power. The experimental results showed that ultrasonic process could remove 98% of Congo red within 30 min with higher Qmax value (Qmax = 446.4 at 25 °C). The rate of degradation of CR dye was much faster in this ultrasonic technique rather than conventional adsorption process. The degradation efficiency declined with the addition of common inorganic salts (NaCl, Na2CO3, Na2SO4 and Na3PO4). The rate of degradation suppressed more with increasing salt concentration. Kinetic and isotherm studies indicated that the degradation of CR provides pseudo-second order rate kinetic and Langmuir isotherm model compared to all other models tested. The excellent high degradation capacity of Fe0/PANI under ultrasonic irradiation can be explained on the basis of the formation of active hydroxyl radicals (OH) and subsequently a series of free radical reactions. 相似文献