共查询到20条相似文献,搜索用时 15 毫秒
1.
Scaling is a major problem in the thermal desalination operation which is mainly attributed to the deposition of salts on the tube, thereby increasing the resistance to heat transfer. To reduce or prevent the formation of scale on heat transfer surfaces, treating desalination concentrates and precipitating sparingly soluble salts can be a promising method. In the present work, the effect of ultrasound pretreatment to the synthetically prepared sea water as desalination feed has been investigated with an objective of intensifying salt removal process and avoiding scale formation leading to better heat transfer rates. A lab scale double pipe heat exchanger setup was designed and operated under simulated conditions of the thermal desalination operation. Total operational volume of 2000 ml was used for all experiments with a fixed flow rate of 5 ml/s. To understand the process of scaling, synthetic seawater was prepared as per the ASTM D 1141-98 and was used for scale deposition experiments. The experiments conducted using untreated synthetic seawater confirmed substantial scaling and drop in the heat transfer coefficient from an initial value of 776 W/m2 K to 603 W/m2 K (about 22%) after 24 h operation as compared to deionized water. SEM-EDX analysis was performed to investigate the morphology and main components of the scale. Subsequently, synthetic seawater was treated with ultrasound under continuous flow condition for removal of salts responsible for scaling. It was demonstrated that pretreatment resulted into salt crystallization, after which, the crystals were separated and the filtered solution was passed through the heat exchanger to check the effects on heat transfer rate. It was confirmed that the heat transfer rate was found to be higher with a value of 797 W/m2 K. Overall an effective approach based on ultrasound to remove the scale forming components has been demonstrated with established best conditions as 70% amplitude for 30 min of irradiation at fixed frequency of 20 kHz and 50% duty cycle. 相似文献
2.
The enhancement of the heat transfer assisted by ultrasound is considered to be an interesting and highly efficient cooling technology, but the investigation and application of ultrasound in minichannel heat sinks to strengthen the flow boiling heat transfer are very limited. Herein, a novel installation of ultrasound transducers in the flow direction of a minichannel heat sink is designed to experimentally study the characteristics of heat transfer in flow boiling and the influence of operation parameters (e.g., heat flux, mass flux rate) and ultrasound parameters (e.g., frequency, power) on the flow boiling heat transfer in a minichannel heat sink with and without ultrasound field. Bubble motion and flow pattern in the minichannel are analyzed by high-speed flow visualization, revealing that the ultrasound field induces more bubbles at the same observation position and a forward shift of the onset of nucleation boiling along the flow direction, as ultrasonic cavitation produces a large number of bubbles. Moreover, bubbles hitting the channel wall on the left and right sides are found, and the motion speed of the bubbles is increased by 31.9% under the ultrasound field. Our results demonstrate that the heat transfer coefficient obtained under the ultrasound field is 53.9% higher than in the absence of the ultrasound field under the same conditions, and the enhancement ratio is decreased in the high heat flux region due to the change of the flow regime with increasing heat flux. This study provides a theoretical basis for the application of an ultrasound field in minichannel heat sinks for the enhancement of flow boiling heat transfer. 相似文献
3.
根据气体冷却服的特点,对不同进风型式下气体冷却服中空气流动与换热进行研究。建立了进气口加设挡板层、进气口带均流器型和直吹型3种型式气体冷却服(服装夹层)中冷却空气流动过程的数学模型。对气体的流动过程进行分析,结果表明:不同的进风型式对气体冷却服空气层的温度分布状况、平均气流流速、平均温度、对流散热量影响较大;其中进气口加设挡板层的服装空气夹层温度分布最均匀,进气直吹型的平均气流流速最大,对流散热效果最好。研究结果为气体冷却服进一步的布风优化设计提供了理论和应用依据。 相似文献
4.
Ultrasound is considered to be an effective active heat transfer enhancement method, which is widely used in various fields. But there is no clear understanding of flow boiling heat transfer characteristics in micro/mini-channels under ultrasonic field since the studies related are limited up to now. In this paper, a novel minichannel heat exchanger with two ultrasonic transducers inside the inlet and outlet plenum respectively is designed to experimentally investigate the impacts of ultrasound on flow boiling heat transfer enhancement in a minichannel heat sink. Flow visualization analyses reveal that ultrasound can promote rapid bubble motion, bubble detachment from heating wall surface and thereby new bubble generation, and decrease the length of confined bubble. Furthermore, the flow boiling experiments are initiated employing working fluid R141b at different ultrasonic parameters (e.g., frequency, power, angle of radiation) and heat flux under three types of ultrasound excitations: no ultrasound (NU), single inlet ultrasound (IU), inlet and outlet ultrasound (IOU). The results indicate that ultrasound has obvious augmentation effects on flow boiling heat transfer even though the intensification effects will be limited with the heat flux increases. The higher ultrasonic power, the lower ultrasonic frequency and the higher ultrasonic radiation angle, the better intensification efficiency. The maximum enhancement ratio of have in the saturated boiling section reaches 1.88 at 50 W, 23 kHz and 45° under the experimental conditions. This study will be beneficial for future applications of ultrasound on flow boiling heat transfer in micro/mini-channels. 相似文献
5.
Ultrahigh heat transfer enhancement using nano-porous layer 总被引:1,自引:0,他引:1
Heat transfer enhancement is one of the key issues of saving energies and compact designs for mechanical and chemical devices and plants. We discover an ultrahigh convective heat transfer performance compared to the well-known heat transfer correlations caused by a nano-particle porous surface: the maximum increase of heat transfer coefficient was around 180%. This nano-particle porous layer can be formed on the substrate surface by an etching with some acids or alkalis including around 100 nm size nano-particles made from copper oxide, carbon nano-tube and aluminium oxide. Moreover, we have done some experiments using a co-current flow heat exchanger consisting of hot and cold water-channels and obtained an ultrahigh heat transfer performance: over 200% increase compared to the conventional correlation. On the other hand, in order to theoretically investigate effects of nano-particle porous layer structures on the surface energy transfer, the energy transfer from fluid to the heat transfer surface is calculated by a classical molecular dynamics method. Energy transfer to the surface from the fluid strongly depends on the surface structures in nanometre scale that affect the static structure and dynamic behaviours of fluid molecules in the vicinity of the surface. 相似文献
6.
热管技术已在电子设备散热领域得到广泛应用。热管的传热能力虽然很大,但不能无限加大热负荷。文中讨论了热管的主要极限如沸腾极限、毛细极限、粘性极限、声速极限、携带极限等的理论表达式,就一种实验用微槽平板热管进行了理论计算,得出了毛细极限是实验热管主要传热极限的结论。 相似文献
7.
8.
The present work focuses on possible heat transfer enhancement from a heating plate towards tap water in forced convection by means of 2 MHz ultrasound. The thermal approach allows to observe the increase of local convective heat transfer coefficients in the presence of ultrasound and to deduce a correlation between ultrasound power and Nusselt number. Heat transfer coefficient under ultrasound remains constant while heat transfer coefficient under silent conditions increases with Reynolds number from 900 up to 5000. Therefore, heat transfer enhancement factor ranges from 25% up to 90% for the same energy conditions (supplied ultrasonic power = 110 W and supplied thermal power = 450 W). In the same time cavitational activity due to 2 MHz ultrasound emission was characterized from mechanical and chemical viewpoints without significant results. At least, Particle Image Velocimetry (PIV) measurements have been performed in order to investigate hydrodynamic modifications due to the presence of 2 MHz ultrasound. It was therefore possible to propose a better understanding of heat transfer enhancement mechanism with high frequency ultrasound. 相似文献
9.
Paracetamol (acetaminophen) is one of the most frequently used analgesic and antipyretic drugs. This work deals with ultrasound assisted synthesis (UAS) of paracetamol from hydroquinone using ammonium acetate as an amidating agent. The optimization of various reaction and ultrasound parameters was performed to minimize the energy and time requirement. UAS of paracetamol was achieved at a lower temperature (60 °C) and the time (150 min) without formation of salt as a byproduct, making reaction green and inherently safer. On the other hand, the conventional process requires high reaction temperature (220 °C) and time (15 h). The quantification of the product was done by using high performance liquid chromatography (HPLC). Optimization of parameters revealed that the percent yield of 57.72% can be obtained in 150 min by performing the reaction in the ultrasound bath at 22 kHz frequency, 60 °C temperature, hydroquinone to ammonium acetate and acetic acid in a molar ratio of 1:6:5, 125 W power, 50% duty cycle and agitation speed of 300 RPM. Hence, ultrasound assisted synthesis can be considered as a process intensification tool for the synthesis of paracetamol and possibly other pharmaceutical compounds. 相似文献
10.
11.
从设计和生产工艺两方面阐述了影响风机盘管换热器传热性能的主要因素,针对风机盘管机组在运行中换热器的常见问题,分析原因并提出了相应的解决措施。 相似文献
12.
Rafael Cortell Bataller 《Physics letters. A》2008,372(14):2431-2439
This Letter presents a numerical study of the flow and heat transfer of an incompressible FENE-P fluid over a non-isothermal surface. The governing partial differential equations are converted into ordinary differential equations by a similarity transformation. The effects of the thermal radiation are considered in the energy equation, and the variations of dimensionless surface temperature and dimensionless surface temperature gradient, as well as the heat transfer characteristics with various physical parameters are graphed and tabulated. Two cases are studied, namely, (i) the sheet with prescribed surface temperature (PST case) and (ii) the sheet with prescribed heat flux (PHF case). Moreover, the mechanical characteristics of the corresponding flow are also presented. 相似文献
13.
微热管以其效率高、响应快且无能耗,在高功率集成微电子散热方面应用广泛。针对电子器件的小型化、高能耗发展趋势,本文提出一种新型沟槽道微热管结构,对该沟槽道微热管进行稳态和瞬态热性能实验研究,研究了风速、角度、加热功率等因素对该新型热管的热性能影响规律。结果表明,该微热管在整个散热器传热上起主导作用,性能比达到0.88,冷凝端温差为0.8℃,具有良好的均温性,该微热管加热功率为140 W,空气流速1.5 m/s时,换热系数可达2 359 W/(m2·℃),热阻为0.27℃/W;高功率状态下可保持良好的热扩散性能,有效避免微热管的热应力集中,有望高效解决集成电子器件的散热问题。 相似文献
14.
The influence of different NaCl concentrations (2.5, 5, 7.5 and 10% (w/w)) on the mass transfer kinetics of tuna during brining process with and without ultrasound assistance was evaluated. Results showed that an increase in NaCl concentration and the application of ultrasound accelerated the salt diffusion in the tuna muscle, and the highest yield was obtained in 5% brine concentration. Moreover, the kinetics parameters were significantly affected by the NaCl concentration and ultrasound application during brining. The values of the mass transfer kinetics parameters (k1, k2) for total and water weight changes decreased as NaCl concentration increased with and without ultrasound assistance during brining. In contrast, the higher the NaCl concentration, the higher the value of the salting kinetics parameters for salt weight changes. The application of ultrasound enhanced the salt effective diffusion coefficient (De) from 402.8% to 653.21% during the brining process, and the highest De was also found at 5% brine concentration. The application of ultrasound can improve the uniformity of salt distribution, enhance water holding capacity, reduce hardness and chewiness, but have no significant effect on color of tuna muscle. 相似文献
15.
We demonstrate an experimental method for the measurement of heat transfer coefficient for a fluid system by magnetic resonance imaging. In this method, the temporal variation of thermally induced nuclear shielding is monitored and the average heat transfer coefficient is measured as a function of fluid velocity. We examine the cases of natural convection and forced convection at fluid velocity up to 0.8 m s(-1). These cases correspond to low dimensionless Biot (Bi) number where the heat transfer is limited by thermal convection. We demonstrate the NMR method for two simple geometries, a cylinder and a sphere, to experimentally determine the heat transfer coefficient (h) in two NMR imaging and spectroscopy systems through measuring three NMR parameters, the chemical shift, magnetization and spin self diffusion coefficient. 相似文献
16.
This study aimed at investigating the performances of air drying of blackberries assisted by airborne ultrasound and contact ultrasound. The drying experiments were conducted in a self-designed dryer coupled with a 20-kHz ultrasound probe. A numerical model for unsteady heat and mass transfer considering temperature dependent diffusivity, shrinkage pattern and input ultrasonic energies were applied to explore the drying mechanism, while the energy consumption and quality were analyzed experimentally. Generally, both airborne ultrasound and contact ultrasound accelerated the drying process, reduced the energy consumption and enhanced the retentions of blackberry anthocyanins and organic acids in comparison to air drying alone. At the same input ultrasound intensity level, blackberries received more ultrasound energies under contact sonication (0.299 W) than airborne sonication (0.245 W), thus avoiding the attenuation of ultrasonic energies by air. The modeling results revealed that contact ultrasound was more capable than airborne ultrasound to intensify the inner moisture diffusion and heat conduction, as well as surface exchange of heat and moisture with air. During air drying, contact ultrasound treatment eliminated the gradients of temperature and moisture inside blackberry easier than airborne ultrasound, leading to more homogenous distributions. Moreover, the total energy consumption under air drying with contact ultrasound assistance was 27.0% lower than that with airborne ultrasound assistance. Besides, blackberries dehydrated by contact ultrasound contained more anthocyanins and organic acids than those dried by airborne ultrasound, implying a higher quality. Overall, direct contact sonication can well benefit blackberry drying in both energy and quality aspects. 相似文献
17.
The reaction of oximes with dichloromethane was carried out in 71–98% yields at 20–30 °C for 2–3.5 h in the presence of sodium hydroxide by combination of benzyldimethyltetradecylammonium chloride and ultrasonication. The main advantage of the present procedure is that the reaction time is much shorter than classical methods. 相似文献
18.
Ultrasound-assisted approach has been investigated for delignification so as to develop green and sustainable technology. Combination of NaOH with ultrasound has been applied with detailed study into effect of various parameters such as time (operating range of 15–90 min), alkali concentration (0.25 M−2.5 M), solvent loading (1:15–1:30 w/v), temperature (50–90 ˚C), power (40–140 W) and duty cycle (40–70 %) at fixed frequency of 20 kHz. The optimized operating conditions established for the ultrasonic horn were 1 M as the NaOH concentration, 1 h as treatment time, 70˚C as the operating temperature, 1:20 as the biomass loading ratio, 100 W as the ultrasonic power and 70% duty cycle yielding 67.30% as the delignification extent. Comparative study performed using conventional and ultrasonic bath assisted alkaline treatment revealed lower delignification as 48.09% and 61.55% respectively. The biomass samples were characterized by SEM, XRD, FTIR and BET techniques to establish the role of ultrasound during the treatment. The morphological changes based on the ultrasound treatment demonstrated by SEM were favorable for enhanced delignification and also the crystallinity index was more in the case of ultrasound treated material than that obtained by conventional method. Specific surface area and pore size determinations based on BET analysis also confirmed beneficial role of ultrasound. The overall results clearly demonstrated the intensification obtained due to the use of ultrasonic reactors. 相似文献
19.
20.
本文介绍了一种新型低温热开关的工作原理.考虑到热开关充人的气体在连续介质区和自由分子状态的传热以及肋片沿轴向的导热对热开关的传热特性进行了详细的理论分析.建立了该种热开关传热的理论模型.给出了肋片的厚度、长度、气隙宽度、外壳壁厚与导通热导之间的关系曲线以及气体压强、外壳厚度与关断热导之间的关系曲线. 相似文献