首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

We have studied the direct electrochemistry of glucose oxidase (GOx) immobilized on electrochemically fabricated graphite nanosheets (GNs) and zinc oxide nanoparticles (ZnO) that were deposited on a screen printed carbon electrode (SPCE). The GNs/ZnO composite was characterized by using scanning electron microscopy and elemental analysis. The GOx immobilized on the modified electrode shows a well-defined redox couple at a formal potential of −0.4 V. The enhanced direct electrochemistry of GOx (compared to electrodes without ZnO or without GNs) indicates a fast electron transfer at this kind of electrode, with a heterogeneous electron transfer rate constant (Ks) of 3.75 s−1. The fast electron transfer is attributed to the high conductivity and large edge plane defects of GNs and good conductivity of ZnO-NPs. The modified electrode displays a linear response to glucose in concentrations from 0.3 to 4.5 mM, and the sensitivity is 30.07 μA mM−1 cm−2. The sensor exhibits a high selectivity, good repeatability and reproducibility, and long term stability.

Graphical representation for the fabrication of GNs/ZnO composite modified SPCE and the immobilization of GOx

  相似文献   

2.
Huang  Shan  Lu  Shuangyan  Huang  Chusheng  Sheng  Jiarong  Su  Wei  Zhang  Lixia  Xiao  Qi 《Mikrochimica acta》2015,182(15):2529-2539

We describe a square wave anodic stripping voltammetric (SWASV) platform for the determination of Cu(II). It is based on the use of amino-reduced graphene oxide (NH2-rGO) and β-cyclodextrin (β-CD) that were self-assembled on the surface of a glassy carbon electrode (GCE). The hydrophilicity and electrochemical performance of the resulting modified GCE were investigated by measurement of static contact angles, cyclic voltammetry and electrochemical impedance spectroscopy. Cu(II) was reduced at −1.1 V and then reoxidized at −0.012 V. Under optimum experimental conditions, the modified GCE exhibited excellent SWASV response in that the stripping peak currents (when sweeping between −0.3 and +0.25 V) depends on the concentration of Cu(II) in the 30 nM to 100 μM range. The limit of detection is 2.8 nM (at 3σ/slope). The modified GCE displaying good reproducibility, is stable, highly sensitive and selective. It was successfully applied to the determination of Cu(II) in synthetic and real water samples. The fast electron transfer rate and simple preparation of the NH2-rGO/β-CD composite makes it a promising electrode material for applications in sensing of heavy metal ions.

Amino-modified rGO and β-cyclodextrin form an attractive material for use in an electrochemical platform for highly sensitive and selective determination of Cu(II).

  相似文献   

3.

A nanocomposite consisting of reduced graphene oxide decorated with palladium-copper oxide nanoparticles (Pd-CuO/rGO) was synthesized by single-step chemical reduction. The morphology and crystal structure of the nanocomposite were characterized by field-emission scanning electron microscopy, high resolution transmission electron microscopy and X-ray diffraction analysis. A 3-electrode system was fabricated by screen printing technology and the Pd-CuO/rGO nanocomposite was dropcast on the carbon working electrode. The catalytic activity towards glucose in 0.2 M NaOH solutions was analyzed by linear sweep voltammetry and amperometry. The steady state current obtained at a constant potential of +0.6 V (vs. Ag/AgCl) showed the modified electrode to possess a wide analytical range (6 μM to 22 mM), a rather low limit of detection (30 nM), excellent sensitivity (3355 μA∙mM−1∙cm−2) and good selectivity over commonly interfering species and other sugars including fructose, sucrose and lactose. The sensor was successfully employed to the determination of glucose in blood serum.

A highly sensitive nonenzymatic electrochemical sensor was fabricated using a Pd-CuO composite with reduced graphene oxide. The sensor has a wide detection range and was used to sense glucose in blood serum

  相似文献   

4.
Wang  Fang  Gong  Wencheng  Wang  Lili  Chen  Zilin 《Mikrochimica acta》2015,182(11):1949-1956

Reduced graphene oxide (RGO) was used to construct a bienzyme biosensor containing horseradish peroxidase (HRP) and glucose oxidase (GOx). A poly(toluidine blue) (pTB) film containing RGO acted as both enzyme immobilization matrix and electron transfer mediator. The bienzyme biosensor was characterized by electrochemical techniques and displays a highly sensitive amperometric response to glucose and hydrogen peroxide (H2O2) at a potential as low as −0.1 V (vs. SCE). It is shown that use of RGO causes a strong enhancement on the amperometric responses. H2O2 formed by the action of GOx in the presence of oxygen can be further reduced by HRP in the pTB film contacting the RGO modified electrode. In the absence of oxygen, glucose oxidation proceeds by another mechanism in which electron transfer occurs from GOx to the electrode and with pTB acting as the mediator. Amperometric responses to glucose and H2O2 follow Michaelis-Menten kinetics. The experimental conditions were optimized, and under these conditions glucose can be determined in the 80 μM to 3.0 mM range with a detection limit of 50 μM. H2O2, in turn, can be quantified in up to 30.0 μM concentration with a detection limit of 0.2 μM. The bienzyme biosensor is reproducible, repeatable and stable. Finally, it has been successfully applied to the determination of glucose in plasma samples.

Schematic representation of glocuse detection at GCE/RGO/pTB-HRP-GOx.

  相似文献   

5.
Mei  He  Sheng  Qu  Wu  Huimin  Zhang  Xiuhua  Wang  Shengfu  Xia  Qinghua 《Mikrochimica acta》2015,182(15):2395-2401

Alloy nanoparticles of the type PtxFe (where x is 1, 2 or 3) were synthesized by coreduction with sodium borohydride in the presence of carbon acting as a chemical support. The resulting nanocomposites were characterized by scanning electron microscopy and X-ray diffraction. The nanocomposite was placed on a glassy carbon electrode, and electrochemical measurements indicated an excellent catalytic activity for the oxidation of glucose even a near-neutral pH values and at a working voltage as low as 50 mV (vs. SCE). Under optimized conditions, the sensor responds to glucose in the 10.0 μM to 18.9 mM concentration range and with a 3.0 μM detection limit (at an S/N ratio of 3). Interferences by ascorbic acid, uric acid, fructose, acetamidophenol and chloride ions are negligible.

Nonenzymatic sensing of glucose is demonstrated at neutral pH values and low working potential using a glassy carbon electrode modified with platinum-iron alloy nanoparticles on a carbon support.

  相似文献   

6.
A magnetic glassy carbon electrode (mGCE) was modified with a ternary composite prepared from Prussian blue (PB), magnetite (Fe3O4) nanoparticles, and reduced graphene oxide (rGO) in order to obtain an amperometric sensor for hydrazine. The utilization of Fe3O4 facilitates the magnetic immobilization and separation of sensing material, while the use of rGO enhances sensitivity. The surface coverage and the stability of the PB on the modified electrode were considerably improved. The electro-oxidative response to hydrazine was investigated with this modified mGCE using cyclic voltammetry and amperometric. The sensor, typically operated at a voltage of 0.2 V (vs. SCE), displays superior response hydrazine, with a response time of 4 s, a sensitivity of 97.73 μA μM?1 cm?2 and a 13.7 nM detection limit.
Graphical abstract A magnetic glassy carbon electrode was modified with a ternary composite prepared from Prussian blue, magnetite nanoparticles, and reduced graphene oxide to obtain a selective amperometric sensor for dissolved hydrazine.
  相似文献   

7.

We have investigated the gas sensing properties of ZnO thin films (100 to 200 nm thickness) deposited by room-temperature radio frequency magnetron sputtering. The sensitivity of the films to ethanol vapor was measured in the 10 to 50 ppm concentration range at operating temperatures between 200 and 400 °C. A synergetic effect of decreasing grain size and increasing operating temperature was observed towards the improvement of the sensitivity, reaching a value of 54 and a limit of detection as low as 0.61 ppm. The decrease in the grain size resulted in prolonged response time but faster recovery. In any case, both response time and recovery time are < 400 s. The results demonstrate that room-temperature magnetron sputtering is a viable approach to enhance the performances of ZnO films in sensors for ethanol vapor.

Sensor response for ZnO films in presence of 50 ppm ethanol as a function grain size and temperature

  相似文献   

8.
Ye  Cui  Zhong  Xia  Chai  Yaqin  Yuan  Ruo 《Mikrochimica acta》2015,182(13):2215-2221

An ultrasensitive electrochemical glucose biosensor has been developed by depositing C60-fullerene functionalized with tetraoctylammonium bromide (C60-TOAB+) on the surface of a glassy carbon electrode (GCE). The glucose-binding protein concanavalin A (Con A) was then linked to the surface. Binding of glucose by Con A affects the electroactivity of the reversible redox couple C60/C60 , and this finding forms the basis for a quantitative glucose assay over the 10 to 10 mM concentration range and with a lower detection limit of 3.3 nM (at an S/N ratio of 3). The sensitivity of this sensor allowed glucose to be determined in saliva. This biosensor possesses excellent selectivity, outstanding reproducibility and good long-term stability.

An ultrasensitive electrochemical glucose biosensor has been developed by depositing C60-fullerene functionalized with tetraoctylammonium bromide (C60-TOAB+) on the surface of a glassy carbon electrode (GCE). The glucose-binding protein concanavalin A (Con A) was then linked to the surface. Binding of glucose by Con A affects the electroactivity of the reversible redox couple C60/C60 , and this finding forms the basis for a quantitative glucose assay over the 10 to 10 mM concentration range and with a lower detection limit of 3.3 nM (at an S/N ratio of 3). The sensitivity of this sensor allowed glucose to be determined in saliva.

  相似文献   

9.
Chen  Ningning  Cheng  Yuxiao  Li  Chen  Zhang  Cuiling  Zhao  Kai  Xian  Yuezhong 《Mikrochimica acta》2015,182(11):1967-1975

We describe an electrochemical sensor for melamine based on a glassy carbon electrode (GCE) modified with reduced graphene oxide that was decorated with gold nanoparticles (AuNP/rGO). The AuNPs/rGO nanocomposite was synthesized by co-reduction of Au(III) and graphene oxide and characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The response of the modified GCE to melamine was investigated by using hexacyanoferrate as an electrochemical reporter. It is found that the electrochemical response to hexacyanoferrate is increasingly suppressed by increasing concentration of melamine. This is attributed to competitive adsorption of melamine at the AuNP/rGO composite through the interaction between the amino groups of melamine and the AuNPs. The presence of rGO, in turn, provides a platform for a more uniform distribution of the AuNPs and enhances the electron transfer rate of the redox reaction. The findings were used to develop a sensitive method for the determination of melamine. Under optimized conditions, the redox peak current of hexacyanoferrate at a working voltage of 171 mV (vs. SCE) is linearly related to the concentration of melamine in 5.0 to 50 nM range. The method was successfully applied to the determination of melamine in food contact materials.

A simple electrochemical sensor based on gold nanoparticles decorated reduced graphene oxide was developed for highly sensitive measurement of melamine in food contact materials.

  相似文献   

10.
Yang  Tao  Chen  Huaiyin  Yang  Ruirui  Jiang  Yuhang  Li  Weihua  Jiao  Kui 《Mikrochimica acta》2015,182(15):2623-2628

Thin-layered molybdenum disulfide (MoS2) was intercalated, via ultrasonic exfoliation, into self-doped polyaniline (SPAN). This material, when placed on a glassy carbon electrode (GCE), exhibits excellent electrical conductivity and synergistic catalytic activity with respect to the detection of bisphenol A (BPA). The electrochemical response of the modified GCE to BPA was investigated by cyclic voltammetry and differential pulse voltammetry. Under optimal conditions, the oxidation peak current (measured best at 446 mV vs. SCE) is related to the concentration of BPA in the range from 1.0 nM to 1.0 μM, and the detection limit is 0.6 nM.

Thin-layered molybdenum disulfide (MoS2) was intercalated into self-doped polyaniline (SPAN) via ultrasonic exfoliation. The special conjugated structure and functional groups of MoS2-SPAN composite help to adsorb BPA easily. MoS2-SPAN has a synergistic effect for catalyzing the oxidation of BPA. The BPA electrochemical sensor based on MoS2-SPAN has a high sensitivity and low detection limit.

  相似文献   

11.
Li  Qian  Cheng  Kui  Weng  Wenjian  Du  Piyi  Han  Gaorong 《Mikrochimica acta》2013,180(15):1487-1493

Titanium dioxide nanorods (TNR) were grown on a titanium electrode by a hydrothermal route and further employed as a supporting matrix for the immobilization of nafion-coated horseradish peroxidase (HRP). The strong electrostatic interaction between HRP and TNR favors the adsorption of HRP and facilitates direct electron transfer on the electrode. The electrocatalytic activity towards hydrogen peroxide (H2O2) was investigated via cyclic voltammetry and amperometry. The biosensor exhibits fast response, a high sensitivity (416.9 μA·mM−1), a wide linear response range (2.5 nM to 0.46 mM), a detection limit as low as 12 nM, and a small apparent Michaelis-Menten constant (33.6 μM). The results indicate that this method is a promising technique for enzyme immobilization and for the fabrication of electrochemical biosensors.

A TiO2 nanorod film was directly grown on Ti substrate by a hydrothermal route, and was further employed for a supporting matrix to immobilize horseradish peroxidase as a biosensor electrode. The as-prepared hydrogen peroxide biosensor based on Nafion/HRP/TNR/Ti electrode exhibited fast response and excellent electrocatalytic activity toward H2O2, i.e., a high sensitivity (416.9 μA mM−1), a wide linear range (2.5 × 10−8 to 4.6 × 10−4 M) with a low detection limit (0.012 μM) and a small apparent Michaelis-Menten constant (33.6 μM).

  相似文献   

12.
Liang  Gang  Liu  Xinhui 《Mikrochimica acta》2015,182(13):2233-2240

We describe a sensitive and selective biosensor for the environmental metabolite 2-hydroxyfluorene (2-HOFlu). It is based on electrochemical impedance spectroscopy and was obtained by assembling a thiolated single-stranded DNA on a gold electrode via S-Au covalent bonding. It is then transformed to a K+-stabilized G-quadruplex-hemin complex which exhibits peroxidase-like activity to catalyze the oxidation of 2-HOFlu by H2O2. This results in the formation of insoluble products that are precipitated on the gold electrode. As a result, the charge transfer resistance (R CT) between the solution and the electrode surface is strongly increased within 10 min as demonstrated by using the ferro/ferricyanide system as a redox probe. The difference in the charge transfer resistances (ΔR CT) before and after incubation of the DNA film with 2-HOFlu and H2O2 serves as the signal for the quantitation of 2-HOFlu with a 1.2. nM detection limit in water of pH 7.4. The assay is highly selective over other selected fluorene derivatives. It was exploited to determine 2-HOFlu in spiked lake water samples where it displayed a detection limit of 3.6 nM. Conceivably, this method has a wide scope in that it may be applied to other analytes for which respective G-quadruplexes are available.

A G-quadruplex DNAzyme based impedimetric biosensor for sensitive detection of 2-hydroxyfluorene using hemin as a peroxidase enzyme mimic was constructed with a detection limit of 1.2 nM in water and 3.6 nM in spiked lake water samples.

  相似文献   

13.
Lin  Yuqing  Hu  Lianglu  Li  Linbo  Wang  Keqing  Ji  Yunfei  Zou  Hong 《Mikrochimica acta》2015,182(11):2069-2075

We are presenting an electrochemical method for the determination of pyrophosphate ions (PPi) that is based on the competitive coordination of Cu(II) ion to a nanofilm of cysteine (Cys) and dissolved PPi. Cys was immobilized on the surface of a gold electrode by self-assembly. The Cys-modified gold electrode was loaded with Cu(II) ion which is released from the surface on addition of a sample containing PPi. The sensor shows an unprecedented electrochemical response to PPi, and the reduction peak currents is linearly related to the logarithm of the concentration of PPi in the 100 nM to 10 mM range (with an R2 or 0.982). The limit of detection is ~10 nM which is lower than the detection limits hitherto reported for PPi. Adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and common anions give a much weaker response. The method demonstrated here is simple, effective, highly sensitive, hardly interfered, and does not require the addition of a reagent. The method was applied to the determination of PPi in (spiked) serum samples.

Schematic illustration of the pyrophosphate sensing process.

  相似文献   

14.
Yang  Yang  Fu  Renzhong  Yuan  Jianjun  Wu  Shiyuan  Zhang  Jialiang  Wang  Haiying 《Mikrochimica acta》2015,182(13):2241-2249

We are presenting a sensor for hydrogen peroxide (H2O2) that is based on the use of a heterostructure composed of Pt nanoparticles (NPs) and carbon nanofibers (CNFs). High-density Pt NPs were homogeneously loaded onto a three-dimensional nanostructured CNF matrix and then deposited in a glassy carbon electrode (GCE). The resulting sensor synergizes the advantages of the conducting CNFs and the nanoparticle catalyst. The porous structure of the CNFs also favor the high-density immobilization of the NPs and the diffusion of water-soluble molecules, and thus assists the rapid catalytic oxidation of H2O2. If operated at a working voltage of −0.2 V (vs. Ag/AgCl), the modified GCE exhibits a linear response to H2O2 in the 5 μM to 15 mM concentration range (total analytical range: 5 μM to 100 mM), with a detection limit of 1.7 μM (at a signal-to-noise ratio of 3). The modified GCE is not interfered by species such as uric acid and glucose. Its good stability, high selectivity and good reproducibility make this electrode a valuable tool for inexpensive amperometric sensing of H2O2.

The Pt NPs/CNF heterostructure-based H2O2 sensor synergizes the advantages of both the conducting carbon nanofibers and the nanoparticle catalyst. The 3D structure of the nanofibers favor high density immobilization of the nanoparticles and penetration by water-soluble molecules, which assists the catalyic oxidation of H2O2. The sensor shows outstanding performance in terms of detection range, detection limit, response time, stability and selectivity.

  相似文献   

15.
Pan  Feng  Mao  Jie  Chen  Qiang  Wang  Pengbo 《Mikrochimica acta》2013,180(15):1471-1477

Magnetic Fe3O4@SiO2 core shell nanoparticles containing diphenylcarbazide in the shell were utilized for solid phase extraction of Hg(II) from aqueous solutions. The Hg(II) loaded nanoparticles were then separated by applying an external magnetic field. Adsorbed Hg(II) was desorbed and its concentration determined with a rhodamine-based fluorescent probe. The calibration graph for Hg(II) is linear in the 60 nM to 7.0 μM concentration range, and the detection limit is at 23 nM. The method was applied, with satisfying results, to the determination of Hg(II) in industrial waste water.

  相似文献   

16.
Wang  Zhong-Xia  Guo  Yun-Xia  Ding  Shou-Nian 《Mikrochimica acta》2015,182(13):2223-2231

A one-pot route has been developed for the preparation of bovine serum albumin-templated nickel-doped bimetallic gold-nickel nanoclusters (BSA-Au-Ni NCs) at a 10:1 M ratio of the precursor salts in a BSA matrix under alkaline conditions. The metal ions are reduced to the metal alloys by BSA. The resulting NCs display strong fluorescence and dual emission with peaks at 405 and 640 nm, respectively, under excitation at 340 nm. Fluorescence is strongly enhanced on addition of Cd(II) ions, but quenched on addition of Hg(II) ions. The findings have been exploited to design a fluorometric method for the separate determination of Cd(II) and Hg(II), respectively. The optimized analytical nanosystem displays relatively good dynamics between enhancement and quenching. Cd(II) and Hg(II) can be quantified in the 0 to 200 and 0 nM to 24 μM, respectively. The limits of detection are ~1.8 nM in both cases, which indicates the highest sensitivity to Cd(II) and Hg(II) ions for a fluorescent probe. This new kind of nanocrystal probe is hardly interfered by a range of commonly encountered metal ions. Its advantages were demonstrated by determining Cd(II) and Hg(II) ions in spiked serum samples.

Dually emitting nanoclusters composed of gold-nickel alloys are shown to act as very sensitive fluorescent probes for the detection of Cd(II) and Hg(II) ions.

  相似文献   

17.

An electrochemical sensor was developed and tested for detection of L-tyrosine in the presence of epinephrine by surface modification of a glassy carbon electrode (GCE) with Nafion and cerium dioxide nanoparticles. Fabrication parameters of a surfactant-assisted precipitation method were optimized to produce 2–3 nm CeO2 nanoparticles with very high surface-to-volume ratio. The resulting nanocrystals were characterized structurally and morphologically by X-ray diffractometery (XRD), scanning and high resolution transmission electron microscopy (SEM and HR-TEM). The nanopowder is sonochemically dispersed in a Nafion solution which is then used to modify the surface of a GCE electrode. The electrochemical activity of L-tyrosine and epinephrine was investigated using both a Nafion-CeO2 coated and a bare GCE. The modified electrode exhibits a significant electrochemical oxidation effect of L-tyrosine in a 0.2 M Britton-Robinson (B-R) buffer solution of pH 2. The electro-oxidation peak current increases linearly with the L-tyrosine concentration in the molar concentration range of 2 to 160 μM. By employing differential pulse voltammetry (DPV) for simultaneous measurements, we detected two reproducible peaks for L-tyrosine and epinephrine in the same solution with a peak separation of about 443 mV. The detection limit of the sensor (signal to noise ratio of 3) for L-tyrosine is ~90 nM and the sensitivity is 0.20 μA μM−1, while for epinephrine these values are ~60 nM and 0.19 μA μM−1. The sensor exhibited excellent selectivity, sensitivity, reproducibility and stability as well as a very good recovery time in real human blood serum samples.

Simultaneous electrochemical determination of L-tyrosine and epinephrine in blood plasma with Nafion-CeO2/GCE modified electrode showing a 443 mV peak-to-peak potential difference between species oxidation peak currents.

  相似文献   

18.
Wang  Minghua  Zhang  Shuai  Ye  Zihan  Peng  Donglai  He  Linghao  Yan  Fufeng  Yang  Yanqin  Zhang  Hongzhong  Zhang  Zhihong 《Mikrochimica acta》2015,182(13):2251-2258

Multilayered reduced graphene oxide (rGO) was functionalized with amino groups by treatment with nitrogen plasma. Raman spectroscopy showed plasma treatment not to substantially alter the chemical structure of rGO and that a wide range of functional nitrogen groups is evenly incorporated into the carbon lattice. The amino-modified rGO was used to design an electrochemical biosensor in which a DNAzyme, substrate DNA and Pb(II) and Hg(II) binding DNA were immobilized on the amino-rGO placed on a gold electrode. The high concentration of amino groups and the rough surface of the rGO favor DNA immobilization. Heavy metal ions are bound to the surface via specific interaction between DNA and the two ions which are detected by electrochemical impedance spectroscopy at a potential of 0.2 V (vs. Ag/AgCl). The detection limits for Pb(II) and Hg(II) are as low as 7.8 and 5.4 pM, respectively, and the analytical ranges extend from 0.01 to 100 nM. The sensor is highly specific and stable and therefore represents a highly promising tool for use in environmental monitoring.

A nanofilm of reduced graphene oxide was first modified with amino groups by treatment with nitrogen plasma. A special DNA was then anchored to the surface to obtain a biosensor for simultaneous detection of Pb(II) and Hg(II). The sensor has detection limits as low as 7.8 and 5.4 pM and is highly selective.

  相似文献   

19.

This study describes the facile synthesis of platinum nanoparticle-containing porous carbons (Pt/C) by carbonization of freeze-dried agarose gels containing potassium tetrachloroplatinate under a nitrogen atmosphere at 800 °C. By adjusting the ratio between agarose and platinate in the freeze-dried gels, the Pt content in the final Pt/C products could be systematically varied from 0–10 wt.%. Transmission electron microscopy, inductively coupled plasma atomic emission spectrometry, X-ray photoelectron spectroscopy, Raman spectroscopy, and nitrogen physisorption measurements revealed that the Pt/C materials obtained by this method possess high surface areas (350–500 m2 g−1), narrow Pt nanoparticle size distributions (6 ± 3 nm) and nanocrystalline graphite –like carbon character. By immobilization of glucose oxidase on the surface of a 4 wt.% Pt/C electrocatalyst prepared by this route, a very sensitive amperometric glucose biosensor was obtained (response time <2 min, sensitivity 1.9 mA M−1; and a linear response with glucose concentration up to 10 mM). The simplicity and versatility of the described synthetic method suggests its application to the preparation of carbon supported noble metal catalysts including palladium/C and gold/C.

This study describes the facile synthesis of platinum nanoparticle-containing porous carbons (Pt/C) by carbonization of freeze-dried agarose gels containing potassium tetrachloroplatinate. The Pt/C materials exhibited excellent electrocatalytic activities, as demonstrated by their successful integration into amperometric glucose biosensor

  相似文献   

20.
Sun  Dong  Xu  Caiqun  Long  Jianghua  Ge  Teng 《Mikrochimica acta》2015,182(15):2601-2606

This article describes an electrochemical sensor for the dye additive Sunset Yellow (SY). It consists of a carbon paste electrode modified with nanostructured resorcinol-formaldehyde (RF) resin. The RF resin warrants strong signal enhancement and a strongly increased oxidation peak currents of SY at 0.66 V (vs. SCE). The effects of pH value, amount of RF polymer, accumulation potential and time were optimized. The sensor has a linear response to SY in the 0.3 to 125 nM concentration range, and the limit of detection is 0.09 nM after a 2-min accumulation time. The electrode was applied to the analysis of samples of wastewater and drinks, and the results are consistent with those obtained by HPLC.

Nanostructured resorcinol-formaldehyde (RF) resin was prepared and used as a material for electrochemical determination of Sunset Yellow.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号