首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selenium (Se) is an element in the same main group as sulfur and is characterized by high electrical conductivity and large capacity (675 mAh g−1). Herein, a novel ultra-high dispersion amorphous selenium graphene composite (a-Se/rGO) was synthesized and a selenium nanorods graphene composite (b-Se/rGO) was prepared by hydrothermal method as the cathode material for all solid-state lithium−selenium (Li−Se) batteries, hoping to improve the efficiency and utilization rate of active substances in all solid-state batteries. The all-solid-state batteries were assembled using a heated thawing electrolyte (2LiIHPN−LiI; HPN=3-hydroxypropionitrile). The utilization rate of a-Se/rGO was 103 % and the capacity was 697 mAh g−1, which remained at 281 mAh g−1 (41.6 % of the 675 mAh g−1) after 30 cycles under 0.5 C. Notably, a-Se/rGO showed excellent performance concerning its utilization rate, with a capacity of up to 610 mAh g−1 at 2 C, due to the high availability of amorphous Se and the special properties of the electrolytes. However, in the charge and discharge cycles, the second discharge capacity of a-Se/rGO was more significantly attenuated than that of the first discharge due to the formation of larger crystals of selenium during the charging process. The battery assembled using b-Se/rGO maintained a capacity of 270.58 mAh g−1 after 30 cycles (the retention rate of discharge capacity was 66.13 % compared with that in the first cycle). Through TEM and other relevant tests, it is speculated that amorphous selenium is conducive to capacity release, which, however, is affected by the formation of crystalline selenium after the first charge process.  相似文献   

2.
Although, in the carbon family, graphite is the most thermodynamically stable allotrope, conversion of other carbon allotropes, even amorphous carbons, into graphite is extremely hard. We report a simple electrochemical route for the graphitization of amorphous carbons through cathodic polarization in molten CaCl2 at temperatures of about 1100 K, which generates porous graphite comprising petaloid nanoflakes. This nanostructured graphite allows fast and reversible intercalation/deintercalation of anions, promising a superior cathode material for batteries. In a Pyr14TFSI ionic liquid, it exhibits a specific discharge capacity of 65 and 116 mAh g−1 at a rate of 1800 mA g−1 when charged to 5.0 and 5.25 V vs. Li/Li+, respectively. The capacity remains fairly stable during cycling and decreases by only about 8 % when the charge/discharge rate is increased to 10000 mA g−1 during cycling between 2.25 and 5.0 V.  相似文献   

3.
Lithium–sulfur (Li–S) batteries are considered to be one of the most promising energy storage systems owing to their high energy density and low cost. However, their wide application is still limited by the rapid capacity fading. Herein, polydopamine (PDA)-coated N-doped hierarchical porous carbon spheres (NPC@PDA) are reported as sulfur hosts for high-performance Li-S batteries. The NPC core with abundant and interconnected pores provides fast electron/ion transport pathways and strong trapping ability towards lithium polysulfide intermediates. The PDA shell could further suppress the loss of lithium polysulfide intermediates through polar–polar interactions. Benefiting from the dual function design, the NPC/S@PDA composite cathode exhibits an initial capacity of 1331 mAh g−1 and remains at 720 mAh g−1 after 200 cycles at 0.5 C. At the pouch cell level with a high sulfur mass loading, the NPC/S@PDA composite cathode still exhibits a high capacity of 1062 mAh g−1 at a current density of 0.4 mA cm−2.  相似文献   

4.
A series of nanostructured carbon/antimony composites have been successfully synthesized by a simple sol–gel, high‐temperature carbon thermal reduction process. In the carbon/antimony composites, antimony nanoparticles are homogeneously dispersed in the pyrolyzed nanoporous carbon matrix. As an anode material for lithium‐ion batteries, the C/Sb10 composite displays a high initial discharge capacity of 1214.6 mAh g?1 and a reversible charge capacity of 595.5 mAh g?1 with a corresponding coulombic efficiency of 49 % in the first cycle. In addition, it exhibits a high reversible discharge capacity of 466.2 mAh g?1 at a current density of 100 mA g?1 after 200 cycles and a high rate discharge capacity of 354.4 mAh g?1 at a current density of 1000 mA g?1. The excellent cycling stability and rate discharge performance of the C/Sb10 composite could be due to the uniform dispersion of antimony nanoparticles in the porous carbon matrix, which can buffer the volume expansion and maintain the integrity of the electrode during the charge–discharge cycles.  相似文献   

5.
Lithium-sulfur batteries are promising secondary energy storage devices that are mainly limited by its unsatisfactory cyclability owing to inefficient reversible conversion of sulfur and lithium sulfide on the cathode during the discharge/charging process. In this study, nitrogen-doped three-dimensional porous carbon material loaded with CoSe2 nanoparticles (CoSe2-PNC) is developed as a cathode for lithium-sulfur battery. A combination of CoSe2 and nitrogen-doped porous carbon can efficiently improve the cathode activity and its conductivity, resulting in enhanced redox kinetics of the charge/discharge process. The obtained electrode exhibits a high discharge specific capacity of 1139.6 mAh g−1 at a current density of 0.2 C. After 100 cycles, its capacity remained at 865.7 mAh g−1 thus corresponding to a capacity retention of 75.97 %. In a long-term cycling test, discharge specific capacity of 546.7 mAh g−1 was observed after 300 cycles performed at a current density of 1 C.  相似文献   

6.
The development of ultrastable carbon materials for potassium storage poses key limitations caused by the huge volume variation and sluggish kinetics. Nitrogen-enriched porous carbons have recently emerged as promising candidates for this application; however, rational control over nitrogen doping is needed to further suppress the long-term capacity fading. Here we propose a strategy based on pyrolysis–etching of a pyridine-coordinated polymer for deliberate manipulation of edge-nitrogen doping and specific spatial distribution in amorphous high-surface-area carbons; the obtained material shows an edge-nitrogen content of up to 9.34 at %, richer N distribution inside the material, and high surface area of 616 m2 g−1 under a cost-effective low-temperature carbonization. The optimized carbon delivers unprecedented K-storage stability over 6000 cycles with negligible capacity decay (252 mA h g−1 after 4 months at 1 A g−1), rarely reported for potassium storage.  相似文献   

7.
杨淳  赵欣悦  张灵志 《无机化学学报》2021,37(11):1922-1930
以二氧化硅(SiO2)为模板,结合静电纺丝与溶胶-凝胶法制备了多孔碳纳米纤维膜(PCNFS),再通过熔融扩散法负载硒,制备了一种柔性的碳/硒复合电极(Se@PCNFS)。结合X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对材料的微观结构和形貌进行表征,结果显示多孔碳纤维直径约300 nm,硒均匀地嵌入碳纤维膜的孔洞中。电化学测试结果表明,1Se@PCNFS电极在锂硒电池中表现出优异的循环性能和倍率性能。在0.5C倍率下,初始放电比容量达到569 mAh·g-1,循环500次后比容量为340 mAh·g-1;在2C倍率时,比容量为403 mAh·g-1。  相似文献   

8.
Surface oxygen functionalities (particularly C−O configuration) in carbon materials have negative influence on their electrical conductivity and Na+ storage performance. Herein, we propose a concept from surface chemistry to regulate the oxygen configuration in hierarchically porous carbon nanosheets (HPCNS). It is demonstrated that the C−O/C=O ratio in HPCNS reduces from 1.49 to 0.43 and its graphitization degree increases by increasing the carbonization temperature under a reduction atmosphere. Remarkably, such high graphitization degree and low C−O content of the HPCNS-800 are favorable for promoting its electron/ion transfer kinetics, thus endowing it with high-rate (323.6 mAh g−1 at 0.05 A g−1 and 138.5 mAh g−1 at 20.0 A g−1) and durable (96 % capacity retention over 5700 cycles at 10.0 A g−1) Na+ storage performance. This work permits the optimization of heteroatom configurations in carbon for superior Na+ storage.  相似文献   

9.
Highly porous reticular Li2O/CoO composite thin films fabricated by electrostatic spray deposition were investigated by using X-ray diffraction, scanning electron microscopy, galvanostatic cell-cycling measurements, and AC impedance spectroscopy measurements. The results of the electrochemical tests indicate that the initial coulombic efficiency and capacity retention are dependent on Li2O content and the specific surface area of the deposited layer. Irrespective of the type of substrate, the electrode gave the best electrochemical performance when the molar ratio of Li to Co was controlled at 1:1. At the optimal composition, at 0.2 C the initial coulombic efficiency was as high as 81.9 % and 83.6 % for the film on Cu foil and on porous Ni, respectively. The Li2O/CoO (Li/Co=1:1) films on Ni foam and Cu foil had sustained capacities of up to 790 and 715 mAh g−1, respectively, at a rate of 1 C over 100 cycles at 25 °C. Similar cycling experiments carried out at 70 °C showed that the capacity is temperature-sensitive, and it exhibited reversible capacities as high as 1018 (Cu foil) and 1269 mAh g−1 (Ni foam) for up to 100 cycles. The thin-film electrodes on Ni foam always performed better than those on Cu foil. Cycling at elevated temperature (70 °C) also resulted in a significant increase in capacity.  相似文献   

10.
Utilizing cost-effective raw materials to prepare high-performance silicon-based anode materials for lithium-ion batteries (LIBs) is both challenging and attractive. Herein, a porous SiFe@C (pSiFe@C) composite derived from low-cost ferrosilicon is prepared via a scalable three-step procedure, including ball milling, partial etching, and carbon layer coating. The pSiFe@C material integrates the advantages of the mesoporous structure, the partially retained FeSi2 conductive phase, and a uniform carbon layer (12–16 nm), which can substantially alleviate the huge volume expansion effect in the repeated lithium-ion insertion/extraction processes, effectively stabilizing the solid–electrolyte interphase (SEI) film and markedly enhancing the overall electronic conductivity of the material. Benefiting from the rational structure, the obtained pSiFe@C hybrid material delivers a reversible capacity of 1162.1 mAh g−1 after 200 cycles at 500 mA g−1, with a higher initial coulombic efficiency of 82.30 %. In addition, it shows large discharge capacities of 803.1 and 600.0 mAh g−1 after 500 cycles at 2 and 4 A g−1, respectively, manifesting an excellent electrochemical lithium storage. This work provides a good prospect for the commercial production of silicon-based anode materials for LIBs with a high lithium-storage capacity.  相似文献   

11.
Silicon monoxide (SiO) is considered as one of the most promising alternative anode materials thanks to its high theoretical capacity, satisfying operating voltage and low cost. However, huge volume change, poor electrical conductivity, and poor cycle performance of SiO dramatically hindered its commercial application. In this work, we report an affordable and simple way for manufacturing carbon-coated SiO−C composites with good electrochemical performance on kilogram scales. Industrial grade SiO was modified by carbon coating using cheap and environment friendly polyvinyl pyrrolidone (PVP) as carbon source. High-resolution transmission electron microscopy (HRTEM) and Raman spectra results show that there is an amorphous carbon coating layer with a thickness of about 40 nm on the surface of SiO. The synthesized SiO−C-650 composite shows great electrochemical performance with a high capacity of 1491 mAh.g−1 at 0.1 C rate and outstanding capacity retention of 67.2 % after 100 cycles. The material also displays an excellent performance with a capacity of 1100 mAh.g−1 at 0.5 C rate. Electrochemical impedance spectroscopy (EIS) results also prove that the carbon coating layer can effectively improve the conductivity of the composite and thus enhance the cycling stability of SiO electrode.  相似文献   

12.
Carbon‐based transition‐metal oxides are considered as an appropriate anode material candidate for lithium‐ion batteries. Herein, a simple and scalable dry production process is developed to produce carbon‐encapsulated 3D net‐like FeOx /C materials. The process is simply associated with the pyrolysis of a solid carbon source, such as filter paper, adsorbed with ferrite nitrate. The carbon derived from filter paper induces a carbothermal reduction to form metallic Fe, the addition of carbon and iron increase the conductivity of this material. As expected, this 3D net‐like FeOx /C composite delivers an excellent charge capacity of 851.3 mAh g−1 after 50 cycles at 0.2 A g−1 as well as high stability and rate performance of 714.7 mAh g−1 after 300 cycles at 1 A g−1. Superior performance, harmlessness, low costs, and high yield may greatly stimulate the practical application of the products as anode materials in lithium‐ion batteries.  相似文献   

13.
Quick capacity loss due to the polysulfide shuttle effects and poor rate performance caused by low conductivity of sulfur have always been obstacles to the commercial application of lithium sulfur batteries. Herein, an in-situ doped hierarchical porous biochar materials with high electron-ion conductivity and adjustable three-dimensional (3D) macro-meso-micropore is prepared successfully. Due to its unique physical structure, the resulting material has a specific surface area of 2124.9 m2 g−1 and a cumulative pore volume of 1.19 cm3 g−1. The presence of micropores can effectively physically adsorb polysulfides and mesopores ensure the accessibility of lithium ions and active sites and give the porous carbon material a high specific surface area. The large pores provide channels for the storage of electrolyte and the transmission of ions on the surface of the substrate. The combined effect of these three kinds of pores and the N doping formed in-situ can effectively promote the cycle and rate performance of the battery. Therefore, prepared cathode can still reach a reversible discharge capacity of 616 mAh g−1 at a rate of 5 C. After 400 charge–discharge cycles at 1 C, the reversible capacity is maintained at 510.0 mAh g−1. This new strategy has provided a new approach to the research and industrial-scale production of adjustable hierarchical porous biochar materials.  相似文献   

14.
Lithium-sulfur (Li-S) batteries are one of the most promising high-energy-density storage systems. However, serious capacity attenuation and poor cycling stability induced by the shuttle effect of polysulfide intermediates can impede the practical application of Li-S batteries. Herein we report a novel sulfur cathode by intertwining multi-walled carbon nanotubes (CNTs) and porous boron nitride fibers (BNFs) for the subsequent loading of sulfur. This structural design enables trapping of active sulfur and serves to localize the soluble polysulfide within the cathode region, leading to low active material loss. Compared with CNTs/S, CNTs/BNFs/S cathodes deliver a high initial capacity of 1222 mAh g−1 at 0.1 C. Upon increasing the current density to 4 C, the cell retained a capacity of 482 mAh g−1 after 500 cycles with a capacity decay of only 0.044 % per cycle. The design of CNTs/BNFs/S gives new insight on how to optimize cathodes for Li-S batteries.  相似文献   

15.
《中国化学》2017,35(8):1294-1298
Amorphous MnO2 has been prepared from the reduction of KMnO4 in ethanol media by a facile one‐step wet chemical route at room temperature. The electrochemical properties of amorphous MnO2 as cathode material in sodium‐ion batteries (SIBs ) are studied by galvanostatic charge/discharge testing. And the structure and morphologies of amorphous MnO2 are investigated by X‐ray diffraction (XRD ), scanning electron microscopy (SEM ), transmission electron microscopy (TEM ) and Raman spectra. The results reveal that as‐synthesized amorphous MnO2 electrode material exhibits a spherical morphology with a diameter between 20 and 60 nm. The first specific discharge capacity of the amorphous MnO2 electrode is 123.2 mAh •g−1 and remains 136.8 mAh •g−1 after 100 cycles at the current rate of 0.1 C. The specific discharge capacity of amorphous MnO2 is maintained at 139.2, 120.4, 89, 68 and 47 mAh •g−1 at the current rate of 0.1 C, 0.2 C, 0.5 C, 1 C and 2 C, respectively. The results indicate that amorphous MnO2 has great potential as a promising cathode material for SIBs .  相似文献   

16.
Phosphorus-rich metal phosphides have very high lithium storage capacities, but they are difficult to prepare. A low-temperature phosphorization method based on Mg reducing PCl3 in ZnCl2 molten salt at 300 °C is developed to synthesize phosphorus-rich CuP2@C from a Cu-MOF derived Cu@C composite. Abnormal oxidation of Cu by Zn2+ in the molten salt is observed, which leads to the porous honeycomb nanostructure and homogeneously distributed ultrafine CuP2 nanocrystals. The honeycomb CuP2@C exhibits excellent lithium storage performance with high reversible capacity (1146 mAh g−1 at 0.2 A g−1) and superior cycling stability (720 mAh g−1 after 600 cycles at 1.0 A g−1), showing the promising application of P-rich metal phosphides in lithium ion batteries.  相似文献   

17.
The development of sodium-ion batteries (SIBs) is hindered by the rapid reduction in reversible capacity of carbon-based anode materials. Outside-in doping of carbon-based anodes has been extensively explored. Nickel and NiS2 particles embedded in nitrogen and sulfur codoped porous graphene can significantly improve the electrochemical performance. Herein a built-in heteroatom “self-doping” of albumen-derived graphene for sodium storage is reported. The built-in sulfur and nitrogen in albumen act as the doping source during the carbonization of proteins. The sulfur-rich proteins in albumen can also guide the doping and nucleation of nickel sulfide nanoparticles. Additionally, the porous architecture of the carbonized proteins is achieved through removable KCl/NaCl salts (medium) under high-temperature melting conditions. During the carbonization process, nitrogen can also reduce the carbonization temperature of thermally stable carbon materials. In this work, the NS-graphene delivered a specific capacity of 108.3 mAh g−1 after 800 cycles under a constant current density of 500 mA g−1. In contrast, the Ni/NiS2/NS-graphene maintained a specific capacity of 134.4 mAh g−1; thus the presence of Ni/NiS2 particles improved the electrochemical performance of the whole composite.  相似文献   

18.
Biomass‐derived porous carbon BPC‐700, incorporating micropores and small mesopores, was prepared through pyrolysis of banana peel followed by activation with KOH. A high specific BET surface area (2741 m2 g?1), large specific pore volume (1.23 cm3 g?1), and well‐controlled pore size distribution (0.6–5.0 nm) were obtained and up to 65 wt % sulfur content could be loaded into the pores of the BPC‐700 sample. When the resultant C/S composite, BPC‐700‐S65, was used as the cathode of a Li–S battery, a large initial discharge capacity (ca. 1200 mAh g?1) was obtained, indicating a good sulfur utilization rate. An excellent discharge capacity (590 mAh g?1) was also achieved for BPC‐700‐S65 at the high current rate of 4 C (12.72 mA cm?2), showing its extremely high rate capability. A reversible capacity of about 570 mAh g?1 was achieved for BPC‐700‐S65 after 500 cycles at 1 C (3.18 mA cm?2), indicating an outstanding cycling stability.  相似文献   

19.
Retaining nitrogen for polyacrylonitrile (PAN) based carbon anode is a cost-effective way to make full use of the advantages of PAN for sodium-ion batteries (SIBs). Here, a simple strategy has been successfully adopted to retain N atoms in situ and increase production yield of a novel composite PAZ by mixing 3 wt % of zinc borate (ZB) with poly (acrylonitrile-co-itaconic acid) (PANIA). Among the prepared carbonised fibre (CF) samples, PAZ-CF-700 maintains the highest N content, retaining 90 % of the original N from PANIA. It represents the highest capacity storage contribution (80.55 %) and the lowest impedance Rct (117 Ω). Consequently, the specific capacity increases from 60 mAh g−1 of PANIA-CF-700 to 190 mAh g−1 of PAZ-CF-700 at a current density of 100 mA g−1. At the same time, PAZ-CF-700 exhibits a good rate performance and excellent long-term cycling stability with a specific capacity of 94 mAh g−1 after 4000 cycles at 1.6 A g−1.  相似文献   

20.
Developing flexible Li-CO2 batteries is a promising approach to reuse CO2 and simultaneously supply energy to wearable electronics. However, all reported Li-CO2 batteries use liquid electrolyte and lack robust electrolyte/electrodes structure, not providing the safety and flexibility required. Herein we demonstrate flexible liquid-free Li-CO2 batteries based on poly(methacrylate)/poly(ethylene glycol)-LiClO4-3 wt %SiO2 composite polymer electrolyte (CPE) and multiwall carbon nanotubes (CNTs) cathodes. The CPE (7.14×10−2 mS cm−1) incorporates with porous CNTs cathodes, displaying stable structure and small interface resistance. The batteries run for 100 cycles with controlled capacity of 1000 mAh g−1. Moreover, pouch-type flexible batteries exhibit large reversible capacity of 993.3 mAh, high energy density of 521 Wh kg−1, and long operation time of 220 h at different degrees of bending (0–360°) at 55 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号