首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It is well known that one of the main problems in galactooligosaccharide production (GOS) via tranglycosylation of lactose is the presence of monosaccharides that contribute to increasing the glycaemic index, as is the case of glucose. In this work, as well as studying the effect of ultrasound (US) on glucose oxidase (Gox) activation during gluconic acid (GA) production, we have carried out an investigation into the selective oxidation of glucose to gluconic acid in multienzymatic reactions (β-galactosidase (β-gal) and Gox) assisted by power US using different sources of lactose as substrate (lactose solution, whey permeate, cheese whey). In terms of the influence of matrix on GOS and GA production, lactose solution gave the best results, followed by cheese whey and whey permeate, salt composition being the most influential factor. The highest yields of GOS production with the lowest glucose concentration and highest GA production were obtained with lactose solution in multienzymatic systems in the presence of ultrasound (30% amplitude) when Gox was added after 1 h of treatment with β-gal. This work demonstrates the ability of US to enhance efficiently the obtainment of prebiotic mixtures of low glycaemic index.  相似文献   

2.
3.
In our current research work, the effect of combination of ultrasonic irradiation and high hydrostatic pressure (US/HHP) on the enzymatic activity and enzymatic hydrolysis kinetic parameters of dextran catalytic by dextranase were investigated. Furthermore, the effects of US/HHP on the structure of dextranase were also discussed with the aid of fluorescence spectroscopy and circular dichroism (CD) spectroscopy. The maximum hydrolysis of dextran was observed under US (40 W at 25 kHz for 15 min) combined with HHP (400 MPa for 25 min), in which the hydrolysis of dextran increased by 163.79% compared with the routine thermal incubation at 50 °C. Results also showed that, Vmax and KM values, as well as, kcat of dextranase under US/HHP treatment were higher than that under US, HHP and thermal incubation at 50 °C, indicated that, the substrate is converted into the product at an increased rate when compared with the incubation at 50 °C. Compared to the enzymatic reaction under US, HHP, and routine thermal incubation, dextranase enzymatic reaction under US/HHP treatment showed decreases in Ea, ΔG and ΔH, however small increase in ΔS value was observed. In addition, fluorescence and CD spectra reflected that US/HHP treatment had increased the number of tryptophan on dextranase surface with increased α-helix by 19.80% and reduced random coil by 6.94% upon US/HHP-treated dextranase protein compared to the control, which were helpful for the improvement of its activity. These results indicated that, the combination of US and HHP treatments could be an effective method for improving the hydrolysis of dextran in many industrial applications including sugar manufacturing processes.  相似文献   

4.
The review focus on the effect of ultrasound on protein functionality. The presence of transient ultrasonic mechanical waves induce various sonochemical and sonomechanical effects on a protein. Sonochemical effects include the breakage of chains and/or the modification of side groups of aminoacids. Sonomechanical modifications by enhanced molecular agitation, might lead to the transient or permanent modification of the 3D structure of the folded protein. Since the biological function of proteins depends on the maintenance of its 3D folded structure, both sonochemical and sonomechanical effects might affect its properties. A protein might maintain its 3D structure and functionality after minor sonochemical effects, however, the enhanced mass transfer by sonomechanical effects might expose internal hydrophobic residues of the protein, making protein unfolding to an irreversible denatured state. Ultrasound enhanced mass transport effects are unique pathways to change the 3D folded structure of proteins which lead to a new functionality of proteins as support shield materials during the formation microspheres. Enzymes are proteins and their reactions should be conducted in a reactor set-up where enzymes are protected from sonic waves to maximize their catalytic efficiency. In this review, focused examples on protein dispersions/emulsions and enzyme catalysis are given.  相似文献   

5.
The biosensor was constructed for determination of glucose by using glucose oxidase enzyme immobilized on poly(thiophene-3-boronic acid) (PTBA). Boronic acid functionalized polythiophene layer was obtained by electrochemical polymerization of Thiophene (Th) and thiophene-3-boronic acid (TBA) with different monomer rations. The reconstitution of the apo-glucose oxidase (apo-GOx) on a complexed flavin adenine dinucleotide (FAD) linked to polythiophene boronic acid (PTBA) monolayer yields an electrically contacted enzyme monolayer. The GOx-reconstituted enzyme electrode exhibited excellent electrocatalytic activities toward the reduction and oxidation of hydrogen peroxide as well. The PTBA/FAD/GOx biosensor shows an excellent performance for glucose at +0.4 V with a high sensitivity (2.14 μA/mM) and lower response time (~5 s) in a wide concentration range of 0.5–18 mM (correlation coefficient of 0.9952). Furthermore, the effects of applied potential, pH, temperature, electroactive interference, stability and reusability of the biosensors were discussed.  相似文献   

6.
The objectives of this study were to investigate the effects of multi-frequency energy-gathered ultrasound (MFEGU) and MFEGU assisted alkaline pretreatments on the enzymolysis and the mechanism of two pretreatments accelerating the rice protein (RP) proteolysis process. The results showed that MFEGU and MFEGU assisted alkaline pretreatments improved significantly (P < 0.05) the degree of hydrolysis (DH) and the protein elution amount of RP. Furthermore under the same DH conditions, ultrasound and ultrasound assisted alkaline pretreatments were more save the enzymolysis time than the unpretreatment. The changes in UV–vis spectra, fluorescence emission spectra indicated unfolding and destruction of RP by MFEGU and MFEGU assisted alkaline pretreatments. The circular dichroism analysis showed that both pretreatments decreased α-helix but increased β-sheet and random coil of RP. Amino acid composition revealed that MFEGU and MFEGU assisted alkaline pretreatments could increase the protein elution amount and the ratio of hydrophobic amino acids. Atomic force microscopy (AFM) indicated that both pretreatments destroyed the microstructures and reduced the particle size of RP. Therefore, MFEGU and MFEGU assisted alkaline pretreatments are beneficial to improving the degree of hydrolysis due to its sonochemistry effect on the molecular conformation as well as on the microstructure of protein.  相似文献   

7.
Spent tea (ST) powder is one of the potential sustainable sources available abundantly and can be utilized to produce reducing sugars required for production of platform chemicals. The current study aims at intensifying the reducing sugars production based on ultrasound assisted dilute acid hydrolysis (UADAH). The effects of reaction time, solid liquid ratio, acid concentration and temperature on the yield of reducing sugars were investigated initially for UADAH process based on ultrasonic (US) horn. The highest yield of 24.75 g/L for the reducing sugars was obtained at solid liquid ratio of 1:8, acid concentration of 1% w/v and temperature of 60 °C within 120 min. Use of oxidants like hydrogen peroxide (H2O2) and Fenton’s reagent to further intensify the production has also been studied. Use of H2O2 at optimum loading of 0.75 g/L resulted in reducing sugars yield of 26.2 g/L within 75 min while using same H2O2 loading with FeSO4 at loading of 0.75 g/L along with UADAH reduced the reaction time to 60 min for almost similar yield. Large scale studies performed using US flow cell revealed that yield of reducing sugars as 22.4 g/L is obtained in 120 min in the case of only UADAH, while in the case of UADAH along with H2O2 and Fenton’s reagent, similar yield of reducing sugars was obtained in only 90 and 60 min respectively. UADAH in combination with oxidants has been demonstrated as an effective and intensified approach to produce reducing sugars from spent tea powder available as sustainable source.  相似文献   

8.
Ultrasound is a green technology for intensifying enzymatic reactions. In this study, an ultrasonic water bath with equipment parameters of 28 kHz, 1750.1 W/m2, 60% duty cycle was used to assist the synthesis of butyric acid-lauric acid designer lipid (BLDL), which was catalyzed by Lipozyme 435. A convincing three-layer feed-forward artificial neural network (ANN) model was established (R2 = 0.949, RMSE = 4.759, ADD = 7.329) to accurately predict the optimal parameters combination, which was described as 13.72 mL reaction volume, 15.49% enzyme loading, 0.253 substrate molar ratio (tributyrin/lauric acid), 56.58 °C reaction temperature and 120 min reaction time. The ultrasonic assistance increased actual butyric acid conversion rate by 11.38%, and also enhanced the consumption rate of tributyrin and lauric acid during the reaction. Meanwhile, the esterification activity of Lipozyme 435 was enhanced and its effectiveness up to 6 cycles. Structurally, ultrasound assistance significantly disrupted the secondary structure of the Lipozyme 435: reduced the content of α-helices, increased the content of β-sheet and β-turn. In addition, sonication caused an increase in crevice and micro-damage on the surface of the immobilized enzyme. In conclusion, low-intensity ultrasound at 28 kHz improved the synthesis efficiency of BLDL, which was scientifically predicted by ANN model, and the change of enzyme structure may be the vital reason for ultrasound enhanced reaction. However, the effect of ultrasound on immobilized enzymes’ activity needs to be further explored.  相似文献   

9.
The controllable ultrasonic modification was hindered due to the uncertainty of the relationship between ultrasonic parameters and polysaccharide quality. In this study, the ultrasonic degradation process was established with kinetics. The physicochemical properties and prebiotic activity of ultrasonic degraded Flammulina velutipes polysaccharides (U-FVPs) were investigated. The results showed that the ultrasonic degradation kinetic models were fitted to 1/Mt-1/M0 = kt. When the ultrasonic intensity increased from 531 to 3185 W/cm2, the degradation proceeded faster. The decrease of polysaccharide concentration contributed to the degradation of FVP, and the fastest degradation rate was at 60 °C. Ultrasound changed the solution conformation of FVP, and partially destroyed the stability of the triple helix structure of FVP. Additionally, the viscosity and gel strength of FVP decreased, but its thermal stability was improved by ultrasound. Higher ultrasonic intensity led to larger variations in physicochemical properties. Compared with FVP, U-FVPs could be more easily utilized by gut microbiota. U-FVPs displayed better prebiotic activity by promoting the growth of Bifidobacterium and Brautella and inhibiting the growth of harmful bacteria. Ultrasound could be effectively applied to the degradation of FVP to improve its physicochemical properties and bioactivities.  相似文献   

10.
Ultrasound (US) can be used to disrupt microcrystalline cellulose to give nanofibers via ultrasonic cavitation. Sodium percarbonate (SP), consisting of sodium carbonate and hydrogen peroxide, generates highly reactive radicals, which cause oxidative delignification. Here, we describe a novel pretreatment technique using a combination of US and SP (US–SP) for the efficient saccharification of cellulose and hemicellulose in lignocellulosic corn stover. Although US–SP pretreatment was conducted under mild condition (i.e., at room temperature and atmospheric pressure), the pretreatment greatly increased lignin removal and cellulose digestibility. We also determined the optimum US–SP treatment conditions, such as ultrasonic power output, pretreatment time, pretreatment temperature, and SP concentration for an efficient cellulose saccharification. Moreover, xylose could be effectively recovered from US–SP pretreated biomass without the formation of microbial inhibitor furfural.  相似文献   

11.
For exploring the influence of ultrasound on the flavor characteristic of unsmoked bacon, sensory evaluation combined with E-nose and headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) were performed to analyze the overall flavor profile and specific volatile flavor compounds (VFCs), respectively. Furthermore, the metabolic pathway of VFCs affected by ultrasound was also investigated. Results demonstrated that ultrasound improved the flavor characteristic of unsmoked bacon by raising the levels of nonanal, heptanal, octanal, 3-methylbutanal n-hexyl acetate and n-propyl acetate. Enzymatic oxidation was found to be an important metabolic pathway responsible for the development of flavor characteristic after ultrasound treatment, which could be attributed to the increased activities of lipases and lipoxygenase and the higher concentration of polyunsaturated free fatty acids. The increased level of lipid oxidation after ultrasound treatment was also confirmed by thiobarbituric acid reactive substances. Consequently, ultrasound is an effective approach to enhance the flavor characteristic of unsmoked bacon.  相似文献   

12.
超声波对木瓜蛋白酶催化活性影响的机理研究   总被引:4,自引:0,他引:4       下载免费PDF全文
木瓜蛋白酶经适当参数的超声波处理后酶活力提高。超声处理后酶的米氏常数Km变小,最大反应速率Vm也减小。超声处理后酶的紫外吸收光谱不变,荧光发射光谱也不改变,而差示光谱出现明显的正峰和负峰。研究结果表明,超声波处理后,木瓜蛋白酶的构型没有改变,而构象发生了变化。本文讨论了超声波影响木瓜蛋白酶活性的可能机理。  相似文献   

13.
Ultrasound technology was used to treat rice bran protein (RBP), and the structural and functional properties of ultrasonically treated RBP (URBP) and its chlorogenic acid (CA) complex were studied. When ultrasonic power of 200 W was applied for 10 min, the maximum emission peak λmax of the URBP-CA complex in the fluorescence spectrum was red-shifted by 3.6 nm compared to that of the untreated complex. The atomic force microscope (AFM) analysis indicated that the surface roughness of the complex was minimized (3.89 nm) at the ultrasonic power of 200 W and treatment time of 10 min. Under these conditions, the surface hydrophobicity (H0) was 1730, the contents of the α-helix and β-sheet in the complex were 2.97% and 6.17% lower than those in the untreated sample, respectively, the particle size decreased from 106 nm to 18.2 nm, and the absolute value of the zeta-potential increased by 11.0 mV. Therefore, ultrasonic treatment and the addition of CA changed the structural and functional properties of RBP. Moreover, when ultrasonic power of 200 W was applied for 10 min, the solubility, emulsifying activity index (EAI), and emulsion stability index (ESI) were 68%, 126 m2/g, and 37 min, respectively.  相似文献   

14.
Depolymerization of polyacrylic acid (PAA) as sodium salt has been investigated using ultrasonic and solar irradiations with process intensification studies based on combination with hydrogen peroxide (H2O2) and ozone (O3). Effect of solar intensity, ozone flow and ultrasonic power dissipation on the extent of viscosity reduction has been investigated for individual treatment approaches. The combined approaches such as US + solar, solar + O3, solar + H2O2, US + H2O2 and US + O3 have been subsequently investigated under optimum conditions and established to be more efficient as compared to individual approaches. Approach based on US (60 W) + solar + H2O2 (0.01%) resulted in the maximum extent of viscosity reduction as 98.97% in 35 min whereas operation of solar + H2O2 (0.01%), US (60 W), H2O2 (0.3%) and solar irradiation resulted in about 98.08%, 90.13%, 8.91% and 90.77% intrinsic viscosity reduction in 60 min respectively. Approach of US (60 W) + solar + ozone (400 mg/h flow rate) resulted in extent of viscosity reduction as 99.47% in 35 min whereas only ozone (400 mg/h flow rate), ozone (400 mg/h flow rate) + US (60 W) and ozone (400 mg/h flow rate) + solar resulted in 69.04%, 98.97% and 98.51% reduction in 60 min, 55 min and 55 min respectively. The chemical identity of the treated polymer using combined approaches was also characterized using FTIR (Fourier transform infrared) spectra and it was established that no significant structural changes were obtained during the treatment. Overall, it can be said that the combination technique based on US and solar irradiations in the presence of hydrogen peroxide is the best approach for the depolymerization of PAA solution.  相似文献   

15.
The influence of ultrasonic frequency (20 kHz) and glucose pretreatments either alone or in combination on the drying of sweet potato slices (3 mm) using a hot-air dryer at 60 °C was tested to study the kinetics modeling, phytochemicals, antioxidant activities, and functional and textural changes of the final dried product. The results indicated that total phenolic content and total flavonoid content were significantly higher in glucose-pretreated samples while antioxidant activities were higher in ultrasound- and glucose-pretreated samples. For vitamin C, much degradation occurred in the glucose-pretreated samples when compared with the other pretreated samples apart from the control. Enzymatic browning made a minor contribution to the ultrasound/glucose-pretreated samples, while no significant differences were noted in the glucose-pretreated samples. A modified Henderson and Pabis (MHP) model, followed by the two-term and Hii models, fitted best among the 15 selected mathematical models. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the presence of glucose, phenols, and flavonols in all samples. Microstructural analysis confirmed the hardness (N) in the final glucose-pretreated samples due to glucose layers and less cell damage.  相似文献   

16.
This study aimed to investigate the mechanism of different treatments, namely, ultrasound (US), chlorogenic acid (CA), and ultrasound combined with chlorogenic acid (US plus CA) on the inactivation of Staphylococcus aureus planktonic and biofilm cells. Results showed that the combined treatment of US and CA exhibited remarkable synergistic antibacterial and antibiofilm effects. Scanning electron microscopy images indicated that the combined treatment of US and CA caused the most serious damage to the cell morphology. Confocal laser scanning microscopy images revealed that the combined treatment led to sharp increase and severe damage to the permeability of the cell membrane, causing the release of ATP and nucleic acids and decreasing the exopolysaccharide contents in S. aureus biofilm. Finally, the combined treatment of US plus 1% CA for 60 min inactivated S. aureus cells by 1.13 lg CFU/g on mutton. Thus, the combined treatment of US and CA had synergistic effect against S. aureus under planktonic, biofilm, and food systems.  相似文献   

17.
Ultrasound (US) has been suggested for many whey processing applications. This study examined the effects of ultrasound treatment on the oxidation of lipids in Cheddar cheese whey. Freshly pasteurized whey (0.86 L) was ultrasonicated in a contained environment at the same range of frequencies and energies for 10 and 30 min at 37 °C. The US reactor used was characterized by measuring the generation of free radicals in deionized water at different frequencies (20–2000 kHz) and specific energies (8.0–390 kJ/kg). Polar lipid (PL), free and bound fatty acids and lipid oxidation derived compounds were identified and quantified before and after US processing using high performance liquid chromatography equipped with an evaporative light scattering detector (HPLC–ELSD), methylation followed by gas chromatography flame ionized detector (GC-FID) and solid phase micro-extraction gas chromatography mass spectrometry (SPME-GCMS), respectively. The highest concentration of hydroxyl radical formation in the sonicated whey was found between 400 and 1000 kHz. There were no changes in phospholipid composition after US processing at 20, 400, 1000 and 2000 kHz compared to non-sonicated samples. Lipid oxidation volatile compounds were detected in both non-sonicated and sonicated whey. Lipid oxidation was not promoted at any tested frequency or specific energy. Free fatty acid concentration was not affected by US treatment per se. Results revealed that US can be utilized in whey processing applications with no negative impact on whey lipid chemistry.  相似文献   

18.
This work presents the optimum conditions of dissolution of copper in copper converter slag in sulphuric acid ferric sulphate mixtures in the presence and absence of ultrasound. The Taguchi method was used to determine the optimum conditions. The parameters investigated were the reaction temperature, acid concentration, ferric sulphate concentration and reaction time. The optimum conditions for the maximum dissolution of copper were determined as follows: reaction temperature, 65 °C; acid concentration, 0.2 M; ferric sulphate concentration, 0.15 M; reaction time 180 min. Under these conditions, extraction efficiency of copper, zinc, cobalt, and iron from slag were 89.28%, 51.32%, 69.87%, and 13.73%, respectively, in the presence of ultrasound, while they are 80.41%, 48.28%, 64.52%, and 12.16%, respectively, in the absence of ultrasound. As seen from the above results, it is clear that ultrasound enhances on the dissolution of Cu, Zn, Co and Fe in the slag.  相似文献   

19.
This study evaluated how the generation of pyrazines was promoted by high-intensity ultrasound (HIU) in a Maillard reaction (MR) model system of glucose-glycine. Carbohydrate module labeling (CAMOLA) technique was adopted using D-glucose-13C6 to elucidate the carbon skeleton of both intermediate and final MR products (MRPs). In the D-glucose-13C6-glycine HIU-MR model system, the concentration of 11 types of pyrazines was significantly higher than their counterparts in the thermal MR. Results of CAMOLA analysis showed that a significantly lower proportion of [M]+ in pyrazines with long-length side chains was observed when compared with the pyrazines generated in thermal MR. This phenomenon may suggest the aldol-type condensation was promoted by the HIU, which is a conversion from pyrazines with short-length side chains to those with long-length side chains involving carbonyl compounds. Furthermore, the analysis of isotopomers distribution in 2,3-dimethyl-quinoxaline as the o-phenylenediamine-derivatized 2,3-butanedione indicated that the increased proportion of [M + 4]+ in 2,3-dimethyl-quinoxaline (15.74% ± 0.11%) was attributed to a cleavage of D-glucose-13C6 promoted by the HIU. The above-mentioned findings elucidate that the aldol-type condensation and cleavage of D-glucose contribute to the promoted synthesis of pyrazines. The HIU would generate an extremely high temperature and pressure environment that is favored by the aldol-type condensation as a high-pressure favored reaction. The HIU, therefore, can be further developed as a promising technique to promote flavor generation through the MR.  相似文献   

20.
肖咏梅  赵贞  毛璞  王伟 《应用声学》2009,28(2):156-160
综述了超声辐照对于酶活性和酶催化反应的影响,以及各种超声参数对反应的影响,并展望了超声辐照在酶促反应中的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号