首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pan  Feng  Mao  Jie  Chen  Qiang  Wang  Pengbo 《Mikrochimica acta》2013,180(15):1471-1477

Magnetic Fe3O4@SiO2 core shell nanoparticles containing diphenylcarbazide in the shell were utilized for solid phase extraction of Hg(II) from aqueous solutions. The Hg(II) loaded nanoparticles were then separated by applying an external magnetic field. Adsorbed Hg(II) was desorbed and its concentration determined with a rhodamine-based fluorescent probe. The calibration graph for Hg(II) is linear in the 60 nM to 7.0 μM concentration range, and the detection limit is at 23 nM. The method was applied, with satisfying results, to the determination of Hg(II) in industrial waste water.

  相似文献   

2.
Wang  Zhong-Xia  Guo  Yun-Xia  Ding  Shou-Nian 《Mikrochimica acta》2015,182(13):2223-2231

A one-pot route has been developed for the preparation of bovine serum albumin-templated nickel-doped bimetallic gold-nickel nanoclusters (BSA-Au-Ni NCs) at a 10:1 M ratio of the precursor salts in a BSA matrix under alkaline conditions. The metal ions are reduced to the metal alloys by BSA. The resulting NCs display strong fluorescence and dual emission with peaks at 405 and 640 nm, respectively, under excitation at 340 nm. Fluorescence is strongly enhanced on addition of Cd(II) ions, but quenched on addition of Hg(II) ions. The findings have been exploited to design a fluorometric method for the separate determination of Cd(II) and Hg(II), respectively. The optimized analytical nanosystem displays relatively good dynamics between enhancement and quenching. Cd(II) and Hg(II) can be quantified in the 0 to 200 and 0 nM to 24 μM, respectively. The limits of detection are ~1.8 nM in both cases, which indicates the highest sensitivity to Cd(II) and Hg(II) ions for a fluorescent probe. This new kind of nanocrystal probe is hardly interfered by a range of commonly encountered metal ions. Its advantages were demonstrated by determining Cd(II) and Hg(II) ions in spiked serum samples.

Dually emitting nanoclusters composed of gold-nickel alloys are shown to act as very sensitive fluorescent probes for the detection of Cd(II) and Hg(II) ions.

  相似文献   

3.
Cui  Haochen  Wu  Jayne  Eda  Shigetoshi  Chen  Jiangang  Chen  Wei  Zheng  Lei 《Mikrochimica acta》2015,182(13):2361-2367

A label-free and single-step method is reported for rapid and highly sensitive detection of bisphenol A (BPA) in aqueous samples. It utilizes an aptamer acting as a probe molecule immobilized on a commercially available array of interdigitated aluminum microelectrodes. BPA was quantified by measuring the interfacial capacitance change rate caused by the specific binding between bisphenol A and the immobilized aptamer. The AC signal also induces an AC electrokinetic effect to generate microfluidic motion for enhanced binding. The capacitive aptasensor achieves a limit of detection as low as 10 fM(2.8 fg ⋅ mL − 1) with a 20 s response time. The method is inexpensive, highly sensitive, rapid and therefore provides a promising technology for on-site detection of BPA in food and water samples.

A. AC electrokinetics effect plays a vital role in BPA detection by introducing microfluidic movement to accelerate the molecular transport to the electrode surface.

B. The ACEK capacitive aptasensor has a limit of detection as low as 10 fM (2.8 fg ⋅ mL − 1) with a 20-s response time.

  相似文献   

4.
Wang  Minghua  Zhang  Shuai  Ye  Zihan  Peng  Donglai  He  Linghao  Yan  Fufeng  Yang  Yanqin  Zhang  Hongzhong  Zhang  Zhihong 《Mikrochimica acta》2015,182(13):2251-2258

Multilayered reduced graphene oxide (rGO) was functionalized with amino groups by treatment with nitrogen plasma. Raman spectroscopy showed plasma treatment not to substantially alter the chemical structure of rGO and that a wide range of functional nitrogen groups is evenly incorporated into the carbon lattice. The amino-modified rGO was used to design an electrochemical biosensor in which a DNAzyme, substrate DNA and Pb(II) and Hg(II) binding DNA were immobilized on the amino-rGO placed on a gold electrode. The high concentration of amino groups and the rough surface of the rGO favor DNA immobilization. Heavy metal ions are bound to the surface via specific interaction between DNA and the two ions which are detected by electrochemical impedance spectroscopy at a potential of 0.2 V (vs. Ag/AgCl). The detection limits for Pb(II) and Hg(II) are as low as 7.8 and 5.4 pM, respectively, and the analytical ranges extend from 0.01 to 100 nM. The sensor is highly specific and stable and therefore represents a highly promising tool for use in environmental monitoring.

A nanofilm of reduced graphene oxide was first modified with amino groups by treatment with nitrogen plasma. A special DNA was then anchored to the surface to obtain a biosensor for simultaneous detection of Pb(II) and Hg(II). The sensor has detection limits as low as 7.8 and 5.4 pM and is highly selective.

  相似文献   

5.
Zheng  Dongyun  Liu  Xiaojun  Zhu  Shanying  Cao  Huimin  Chen  Yaguang  Hu  Shengshui 《Mikrochimica acta》2015,182(15):2403-2410

We describe an electrochemical sensor for nitric oxide that was obtained by modifying the surface of a nanofiber carbon paste microelectrode with a film composed of hexadecyl trimethylammonium bromide and nafion. The modified microelectrode displays excellent catalytic activity in the electrochemical oxidation of nitric oxide. The mechanism was studied by scanning electron microscopy and cyclic voltammetry. Under optimal conditions, the oxidation peak current at a working voltage of 0.75 V (vs. SCE) is related to the concentration of nitric oxide in the 2 nM to 0.2 mM range, and the detection limit is as low as 2 nM (at an S/N ratio of 3). The sensor was successfully applied to the determination of nitric oxide released from mouse hepatocytes.

NO electrochemical sensor based on CTAB-Nafion/CNFPME was fabricated through a simple method and applied to detect NO released from mouse hepatocytes successfully.

  相似文献   

6.

We have investigated the gas sensing properties of ZnO thin films (100 to 200 nm thickness) deposited by room-temperature radio frequency magnetron sputtering. The sensitivity of the films to ethanol vapor was measured in the 10 to 50 ppm concentration range at operating temperatures between 200 and 400 °C. A synergetic effect of decreasing grain size and increasing operating temperature was observed towards the improvement of the sensitivity, reaching a value of 54 and a limit of detection as low as 0.61 ppm. The decrease in the grain size resulted in prolonged response time but faster recovery. In any case, both response time and recovery time are < 400 s. The results demonstrate that room-temperature magnetron sputtering is a viable approach to enhance the performances of ZnO films in sensors for ethanol vapor.

Sensor response for ZnO films in presence of 50 ppm ethanol as a function grain size and temperature

  相似文献   

7.
Liu  Guangyang  Yang  Xin  Li  Tengfei  Yu  Hailong  Du  Xinwei  She  Yongxin  Wang  Jing  Wang  Shanshan  Jin  Fen  Jin  Maojun  Shao  Hua  Zheng  Lufei  Zhang  Yanxin  Zhou  Pan 《Mikrochimica acta》2015,182(11):1983-1989

We report on a method for the determination of the herbicide atrazine in tap water samples using melamine-modified gold nanoparticles (Mel-AuNPs). If a solution containing atrazine is added to a solution of such NPs, a color change occurs from wine-red to blue. This is due to a transition from monodisperse to aggregated Mel-AuNPs and caused by strong hydrogen bonding between atrazine and melamine. The color change can be monitored by a UV–vis spectrophotometer or with bare eyes. The ratio of the absorbances at 640 and 523 nm is linearly related to the logarithm of the atrazine concentration in the 0.165 to 16.5 μM range, and (with different slope) in the 16.5 μM to 330 μM range. The detection limit of atrazine is as low as 16.5 nM (S/N = 3). The method was successfully applied to the determination of atrazine in spiked tap water and gave recoveries that ranged from 72.5 % to 102.3 %.

  相似文献   

8.
Chen  Lijian  Wang  Nan  Wang  Xindong  Ai  Shiyun 《Mikrochimica acta》2013,180(15):1517-1522

Platinum nanoparticles (Pt-NPs) with sizes in the range from 10 to 30 nm were synthesized using protein-directed one-pot reduction. The model globular protein bovine serum albumin (BSA) was exploited as the template, and the resulting BSA/Pt-NPs were studied by transmission electron microscopy, energy dispersive X-ray spectroscopy, and resonance Rayleigh scattering spectroscopy. The modified nanoparticles display a peroxidase-like activity that was exploited in a rapid method for the colorimetric determination of hydrogen peroxide which can be detected in the 50 μM to 3 mM concentration range. The limit of detection is 7.9 μM, and the lowest concentration that can be visually detected is 200 μM.

Pt-NPs were synthesized using BSA-directed one-pot reduction and BSA/Pt-NPs composite can effectively catalyze the oxidation of TMB producing blue solution in the presence of H2O2.

  相似文献   

9.
Mei  He  Sheng  Qu  Wu  Huimin  Zhang  Xiuhua  Wang  Shengfu  Xia  Qinghua 《Mikrochimica acta》2015,182(15):2395-2401

Alloy nanoparticles of the type PtxFe (where x is 1, 2 or 3) were synthesized by coreduction with sodium borohydride in the presence of carbon acting as a chemical support. The resulting nanocomposites were characterized by scanning electron microscopy and X-ray diffraction. The nanocomposite was placed on a glassy carbon electrode, and electrochemical measurements indicated an excellent catalytic activity for the oxidation of glucose even a near-neutral pH values and at a working voltage as low as 50 mV (vs. SCE). Under optimized conditions, the sensor responds to glucose in the 10.0 μM to 18.9 mM concentration range and with a 3.0 μM detection limit (at an S/N ratio of 3). Interferences by ascorbic acid, uric acid, fructose, acetamidophenol and chloride ions are negligible.

Nonenzymatic sensing of glucose is demonstrated at neutral pH values and low working potential using a glassy carbon electrode modified with platinum-iron alloy nanoparticles on a carbon support.

  相似文献   

10.
Chen  Yinji  Yao  Li  Deng  Yi  Pan  Daodong  Ogabiela  Edward  Cao  Jinxuan  Adeloju  Samuel B.  Chen  Wei 《Mikrochimica acta》2015,182(13):2147-2154

The article describes a method for rapid and visual determination of Hg(II) ion using unmodified gold nanoparticles (Au-NPs). It involves the addition of Au-NPs to a solution containing Hg(II) ions which, however, does not induce a color change. Next, a solution of lysine is added which induces the aggregation of the Au-NPs and causes the color of the solution to change from wine-red to purple. The whole on-site detection process can be executed in less than 15 min. Other amines (ethylenediamine, arginine, and melamine) were also investigated with respect to their capability to induce aggregation. Notably, only amines containing more than one amino group were found to be effective, but a 0.4 μM and pH 8 solution of lysine was found to give the best results. The detection limits for Hg (II) are 8.4 pM (for instrumental read-out) and 10 pM (for visual read-out). To the best of our knowledge, this LOD is better than those reported for any other existing rapid screening methods. The assay is not interfered by the presence of other common metal ions even if present in 1000-fold excess over Hg(II) concentration. It was successfully applied to the determination of Hg(II) in spiked tap water samples. We perceive that this method provides an excellent tool for rapid and ultrasensitive on-site determination of Hg(II) ions at low cost, with relative ease and minimal operation.

Rapid and ultrasensitive detection of mercury ions using gold nanoparticle based label-free colorimetric method with excellent sensitivity, easy operation and low cost.

  相似文献   

11.
Lin  Yuqing  Hu  Lianglu  Li  Linbo  Wang  Keqing  Ji  Yunfei  Zou  Hong 《Mikrochimica acta》2015,182(11):2069-2075

We are presenting an electrochemical method for the determination of pyrophosphate ions (PPi) that is based on the competitive coordination of Cu(II) ion to a nanofilm of cysteine (Cys) and dissolved PPi. Cys was immobilized on the surface of a gold electrode by self-assembly. The Cys-modified gold electrode was loaded with Cu(II) ion which is released from the surface on addition of a sample containing PPi. The sensor shows an unprecedented electrochemical response to PPi, and the reduction peak currents is linearly related to the logarithm of the concentration of PPi in the 100 nM to 10 mM range (with an R2 or 0.982). The limit of detection is ~10 nM which is lower than the detection limits hitherto reported for PPi. Adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and common anions give a much weaker response. The method demonstrated here is simple, effective, highly sensitive, hardly interfered, and does not require the addition of a reagent. The method was applied to the determination of PPi in (spiked) serum samples.

Schematic illustration of the pyrophosphate sensing process.

  相似文献   

12.
Bhaisare  Mukesh Lavkush  Talib  Abou  Khan  M. Shahnawaz  Pandey  Sunil  Wu  Hui-Fen 《Mikrochimica acta》2015,182(13):2173-2181

A jelly-like form of carbon dots (C-dots) was prepared by microwave-assisted synthesis from citric acid in the presence of tetraoctylammonium bromide. The effect of the concentration of tetraoctylammonium bromide was examined. The synthesized carbon dots were characterized by UV–vis, XRD, FTIR, fluorescence and HR-TEM. Fluorescence extends from 350 to 600 nm, and the corresponding excitation wavelengths range from 300 to 460 nm. Quantum yields are at around 0.11. A cytotoxicity study showed carbon dots to be cell permeable and biocompatible which renders them appropriate for imaging applications. The dots were used to image HeLa cell lines via the blue fluorescence of the dots.

C-dots were synthesized from citric acid by microwave heating in presence of varying concentrations of tetraoctylammonium bromide (TOAB) as a micellar template. The excellent optical properties of the nanoparticles make them well suitable for bio-imaging of HeLa cells.

  相似文献   

13.
Yu  Ningxiang  Peng  Hailong  Xiong  Hua  Wu  Xiaqing  Wang  Xiaoyan  Li  Yanbin  Chen  Lingxin 《Mikrochimica acta》2015,182(13):2139-2146

A fluorescent probe for the sensitive and selective determination of sulfide ions is presented. It is based on the use of graphene quantum dots (GQDs) which emit strong and stable blue fluorescence even at high ionic strength. Copper(II) ions cause aggregation of the GQDs and thereby quench fluorescence. The GQDs-Cu(II) aggregates can be dissociated by adding sulfide ions, and this results in fluorescence turn on. The change of fluorescence intensity is proportional to the concentration of sulfide ions. Under optimal conditions, the increase in fluorescence intensity on addition of sulfide ions is linearly related (r 2 = 0.9943) to the concentration of sulfide ions in the range from 0.20 to 20 μM, and the limit of detection is 0.10 μM (at 3 σ/s). The fluorescent probe is highly selective for sulfide ions over some potentially interfering ions. The method was successfully applied to the determination of sulfide ions in real water samples and gave recoveries between 103.0 and 113.0 %.

Graphene quantum dots (GQDs) emit strong blue fluorescence which, however, is quenched by copper(II) ions due to the formation of GQDs-Cu(II) aggregates. Fluorescence is recovered by sulfide ions due to the dissociation of GQDs-Cu(II) aggregates.

  相似文献   

14.
Sun  Dong  Xu  Caiqun  Long  Jianghua  Ge  Teng 《Mikrochimica acta》2015,182(15):2601-2606

This article describes an electrochemical sensor for the dye additive Sunset Yellow (SY). It consists of a carbon paste electrode modified with nanostructured resorcinol-formaldehyde (RF) resin. The RF resin warrants strong signal enhancement and a strongly increased oxidation peak currents of SY at 0.66 V (vs. SCE). The effects of pH value, amount of RF polymer, accumulation potential and time were optimized. The sensor has a linear response to SY in the 0.3 to 125 nM concentration range, and the limit of detection is 0.09 nM after a 2-min accumulation time. The electrode was applied to the analysis of samples of wastewater and drinks, and the results are consistent with those obtained by HPLC.

Nanostructured resorcinol-formaldehyde (RF) resin was prepared and used as a material for electrochemical determination of Sunset Yellow.

  相似文献   

15.
Lin  Zihan  Pan  Dong  Hu  Tianyu  Liu  Ziping  Su  Xingguang 《Mikrochimica acta》2015,182(11):1933-1939

We describe a near-infrared (NIR) fluorescent thrombin assay using a thrombin-binding aptamer (TBA) and Zn(II)-activated CuInS2 quantum dots (Q-dots). The fluorescence of Zn(II)-activated Q-dots is quenched by the TBA via photoinduced electron transfer, but if thrombin is added, it will bind to TBA to form G-quadruplexes and the Q-dots are released. As a result, the fluorescence intensity of the system is restored. This effect was exploited to design an assay for thrombin whose calibration plot, under optimum conditions, is linear in the 0.034 to 102 nmol L−1 concentration range, with a 12 pmol L−1 detection limit. The method is fairly simple, fast, and due to its picomolar detection limits holds great potential in the diagnosis of diseases associated with coagulation abnormalities and certain kinds of cancer.

We developed a simple near-infrared fluorescence assay using thrombin binding aptamer (TBA) and Zn(II)-activated CuInS2 quantum dots for the highly selective and sensitive detection of thrombin.

  相似文献   

16.

We report on the capillary electrophoretic behavior of citrate-capped gold and silver nanoparticles in aqueous medium when applying a ligand-exchange surface reaction with thiols. Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) of similar size (39 ± 6 and 41 ± 7 nm, respectively) and shape were synthesized, covered with a citrate shell, and characterized by microscopic and spectroscopic techniques. The analysis of these NPs by CE was accomplished by using a buffer solution (pH 9.7; 40 mM SDS, 10 mM CAPS; 0.1 % methanol) containing the anions of thioctic acid or thiomalic acid. These are capable of differently interacting with the surface of the AuNPs and AgNPs and thus introducing additional negative charges. This results in different migration times due to the formation of differently charged nanoparticles.

Capillary electrophoretic behavior of citrate-capped gold and silver nanoparticles (NPs) in aqueous medium when applying a ligand-exchange surface reaction with thiols (thioctic and thiomalic acids), which introduces additional negative charges, has been studied

  相似文献   

17.
Yang  Manman  Kong  Weiqian  Li  Hao  Liu  Juan  Huang  Hui  Liu  Yang  Kang  Zhenhui 《Mikrochimica acta》2015,182(15):2443-2450

We describe the preparation of carbon dots (CDs) from glucose that possess high stability, a quantum yield of 0.32, and low toxicity (according to an MTT assay). They were used, in combination with the fluorogenic zinc(II) probe quercetin to establish a fluorescence resonance energy transfer (FRET) system for the determination of Zn(II). The CDs are acting as the donor, and the quercetin-Zn(II) complex as the acceptor. This is possible because of the strong overlap between the fluorescence spectrum of CDs and the absorption spectrum of the complex. The method enables Zn(II) to be determined in the 2 to 100 μM concentration range, with a 2 μM detection limit. The method was applied to image the distribution of Zn(II) ions in HeLa cells.

Based on the fluorescence resonance energy transfer (FRET) between carbon dots and quercetin (QCT)-Zn2+, the fluorescence indicator was established, which displays high sensitivity and selectivity in the detection of Zn2+. The method was also applied to image the distribution of Zn(II) ions in HeLa cells.

  相似文献   

18.
Mu  Juanjuan  Feng  Qingyue  Chen  Xiudan  Li  Jing  Wang  Huili  Li  Mei-Jin 《Mikrochimica acta》2015,182(15):2561-2566

We describe a nanosensor for sensitive and selective detection of cyanide anions. The Ir(III) chlorine bridge complex [Ir(C^N)2-m-Cl]2 (Irpq, where pq is C^N = 2-phenyl quinoline) was doped into silica nanoparticles (SiNPs) with a typical size of about 30 nm. The intensity of the yellow emission of the doped SiNPs (under 410 nm exCitation) was strongly enhanced on addition of cyanide ions due to the replacement of chloride by cyanide. The method can detect cyanide ions in the 12.5 to 113 μM concentration range, and the limit of detection is 1.66 μM (at an S/N ratio of 3). The method is simple, sensitive and fast, and this makes it a candidate probe for the fast optical determination of cyanide.

The nanosensor is exploiting the cyanide-induced enhancement of the fluorescence of silica nanoparticles doped with an Ir(III) complex which is the result of the replacement of chloride by cyanide.

  相似文献   

19.
Ju  Ke-Jian  Feng  Jin-Xia  Feng  Jiu-Ju  Zhang  Qian-Li  Xu  Tian-Qi  Wei  Jie  Wang  Ai-Jun 《Mikrochimica acta》2015,182(15):2427-2434

A nanocomposite consisting of coral-like gold nanostructures on reduced graphene oxide (RGO) was synthesized with the assistance of dimethylbiguanide (DMBG). It was then fabricated on a glassy carbon electrode, coating with cysteamine in order to enable the immobilization of acetylcholinesterase (AChE) as a model enzyme whose activity of hydrolyzing the substrate of acetylthiocholine is inhibited by the pesticide triazophos. The biosensor has response to acetylthiocholine in the 0.3 ~ 300 μM concentration range at 0.65 V (vs. SCE). The inhibition of the enzyme by triazophos can be determined in concentrations of up to 210 ppb, with a detection limit of 0.35 ppb of triazophos (S/N = 3). The biosensor is highly reproducible and acceptably stable.

Coral-like gold nanostructures supported on reduced graphene oxide were synthesized with the assistance of dimethylbiguanide to fabricate an acetylcholinesterase (AChE) biosensor, which exhibited high reproducibility and good stability, providing a good platform for the detection of organophosphorus pesticides.

  相似文献   

20.
Tang  Qin  Yang  Tingting  Huang  Yuming 《Mikrochimica acta》2015,182(13):2337-2343

Copper nanoclusters (Cu-NCs) were fabricated by chemical reduction of Cu(II) ions using formaldehyde as the reductant and poly(vinyl pyrrolidone) as the protecting agent. The resulting Cu-NCs were characterized by TEM, FT-IR, UV–vis and XPS and fluorescence spectroscopy. The Cu-NCs display a luminescence quantum yield of about 13 %, and the emission peaks shift from 398 to 457 nm on increasing the excitation wavelength from 310 to 390 nm. The Cu-NCs possess a storage stability of at least 2 months and are stable in the presence of high concentrations of salt. Their fluorescence is strongly quenched by hypochlorite, while other common cations, anions and hydrogen peroxide have minor (or no) effects on fluorescence. On this basis, a fluorometric hypochlorite assay was developed that has a 0.1 μM detection limit and a linear range that extends from 1 to 30 μM. The method was successfully used to the determination of hypochlorite in local tap water samples, and the results agreed well with those obtained by a colorimetric method.

Hypochlorite ion is found to quench the fluorescence copper nanoclusters synthesized by reduction of Cu(II) ion by formaldehyde in the presence of poly(vinyl pyrrolidone) serving as protecting agent. This finding resulted in a new fluorescence assay for hypochlorite.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号