首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The synthesis of new bidentate métalloligands derived from tantalocene(C5Me5)(C5H4X)Ta(H2)(PPh2) (X = PPh2, 2P; X = CH2CH2NMe22N) and (C5Me5)(C5H4X)Ta(CO)(PPh2) 4(P,N) is described. When opposed to chromium unsaturated fragments the phosphino functionalised complexes 2P and 4P act as chelating bidentate ligands affording Ta(V) (C5Me5)(C5H4PPh2)Ta(CH2) (μ-PPh2)Cr(CO)4 or Ta(III) (C5Me5)(C5H4PPh2)Ta(CO)(μ-PPh2)Cr(CO)4 bimetallic complexes. The same reaction carried out starting from 2N gives rise to a μ-phosphido, μ-hydrido dibridged complex Cp*(C5H4CH2CH2NMe2)TaH(μ-H)(μ-PPh2)Cr(CO)4.  相似文献   

2.
The binuclear complexes [Cu2L2(H2O)4] · 5H2O (1) and [Ni2L2(H2O)4] · 2H2O (2) (where L = C11H11NO5S, H 2 L = 2-[(3-formyl-5-methyl-2-hydroxy-benzylidene)-amino]ethanesulfonic acid) have been synthesized and characterized by IR, elemental analysis and X-ray diffraction. The crystals belong to the monoclinic system, space group P21/c. Complex 1: a = 16.8902(12), b = 11.2829(6), c = 17.4249(11) Å; β = 106.709(4)°; S = 1.131; V = 3180.5(3) Å3; Z = 4; D Calcd = 1.729 g cm?3; F(000) = 1712; μ = 1.554 mm?1; R 1 = 0.0519, wR 2 = 0.1349; complex 2: a = 11.399(2), b = 19.985(3), c = 7.3694(10) Å; β = 108.664(7)°; S = 1.157; V = 1590.6(4) Å3; Z = 2; D Calcd = 1.604 g cm?3; F(000) = 800; μ = 1.388 mm?1; R 1 = 0.1859, wR 2 = 0.4346. The geometry around each metal(II) center can be described as slightly distorted octahedral. Water-sulfonic clusters and (H2O)4 water clusters can be observed for 1 from the crystal packing diagram, while cavity and offset face-to-face π–π stacking can be observed for 2. The complexes have been tested for the antibacterial activities which show antibacterial activities of 1 for β-hemolytic streptococcus, Staphylococcus aureus and Escherichia coli, and the antibacterial activity of 2 only for β-hemolytic streptococcus.  相似文献   

3.
The metallation of the η5-C5H5(CO)2Fe-η15-C5H4Mn(CO)3 complex with BunLi (THF, ?78 °C) followed by the treatment of the lithium derivative with Ph2PCl afforded the η5-Ph2PC5H4(CO)2Fe-η15-C5H4Mn(CO)3 complex. The reaction of the latter with η5-C5H5(CO)3WCl in the presence of Me3NO produced the trinuclear complex η5-C5H5Cl(CO)2W-η15-(Ph2P)C5H4(CO)2Fe-η15-C5H4Mn(CO)3. The structure of the latter complex was established by IR, UV, and 1H and 31P NMR spectroscopy and X-ray diffraction. The reaction of MeSiCl3 with three equivalents of LiC5H4(CO)2Fe-η15-C5H4Mn(CO)2PPh3 gave the hexanuclear complex MeSi[C5H4(CO)2Fe-η15-C5H4Mn(CO)2PPh3]3.  相似文献   

4.
本文研究2(3H)呋喃酮的热转化和碱催化成2(5H)呋喃酮的过程。应用NMR跟踪技术测定了转化动力常数, 计算了活化能, 这对确定适宜的转化条件具有实际指导意义。还对碱催化下的转化机理进行了探讨。  相似文献   

5.
Thermolysis of cyclooctaselenadiazole (2) yields only selenium-containing products. Compound 2 reacts with CpCo sources to give [(η5-C5H5)CO]22η32-C8H6Se), a fluxional compound whose structure has been determined by X-Ray crystallography.  相似文献   

6.
Density functional theory (DFT) calculations have been performed on the terminal dihalogallyl complexes of iron, ruthenium, and osmium (η(5)-C(5)H(5))(Me(3)P)(2)M(GaX(2)) (M = Fe, Ru, Os; X = Cl, Br, I) and (η(5)-C(5)H(5))(OC)(2)Fe(GaX(2)) (X = Cl, Br, I) at the BP86/TZ2P/ZORA level of theory. On the basis of analyses suggested by Pauling, the M-Ga bonds in all of the dihalogallyl complexes are shorter than M-Ga single bonds; moreover, on going from X = Cl to X = I, the optimized M-Ga bond distances are found to increase. From the perspective of covalent bonding, however, π-symmetry contributions are, in all complexes, significantly smaller than the corresponding σ-bonding contribution, representing only 4-10% of the total orbital interaction. Thus, in these GaX(2) complexes, the gallyl ligand behaves predominantly as a σ donor, and the short M-Ga bond lengths can be attributed to high gallium s-orbital character in the M-Ga σ-bonding orbitals. The natural population analysis (NPA) charge distributions indicate that the group 8 metal atom carries a negative charge (from -1.38 to -1.62) and the gallium atom carries a significant positive charge in all cases (from +0.76 to +1.18). Moreover, the contributions of the electrostatic interaction terms (ΔE(elstat)) are significantly larger in all gallyl complexes than the covalent bonding term (ΔE(orb)); thus, the M-Ga bonds have predominantly ionic character (60-72%). The magnitude of the charge separation is greatest for dichlorogallyl complexes (compared to the corresponding GaBr(2) and GaI(2) systems), leading to a larger attractive ΔE(elstat) term and to M-Ga bonds that are stronger and marginally shorter than in the dibromo and diiodo analogues.  相似文献   

7.
The salts [Fe2η55-C5H4CH{NMe3)CH(NMe2)C5H4}(CO)2(μ-CO)2][X] (X = I or SO3CF3) are the synthetic precursors to a wide range of [Fe2(η-C5H5)2(CO)2(μ-CO)2] derivatives in which the two cyclopentadienyl ligands are joined by a two-carbon bridge.  相似文献   

8.
The complex (Cp2Ti)2AlH4Cl has been isolated from the catalytic system (Cp2TiCl)2-LiAlH4, which is a precursor of the catalyst for the hydrogenation and isomerization of olefins. This complex has been studied by X-ray diffraction. The complex forms rhomboidal crystals with unit cell dimensions a = 10.414, b = 11.998, c = 16.008 Å, space group P212121, Z = 4, and density ϱcalc = 1.40 g/cm3. The Cp2Ti moieties are linked to the Al atom via double hydrogen bridges; the Cl atom is bonded to the Al atom. Analysis of the EPR spectral data and some chemical properties of (Cp2Ti)2AlH4Cl solutions has led us to suggest a mechanism for the formation of the catalytically active species upon interaction of this compound with olefins and solvating solvents.  相似文献   

9.
《Vibrational Spectroscopy》2010,52(2):226-237
Infrared spectra of the powdered (C3N2H5)5Bi2Cl11, (C3N2H5)5Bi2Br11and (C3N2H5)5Sb2Br11 crystals in the region of internal vibrations of the imidazolium cations (3600 and 400 cm−1) at the temperature intervals of 10–300 K, covering paraelectric–ferroelectric phase transitions, are presented and discussed in this paper. The research shows that the vibrational states of the imidazolium cations change markedly during the paraelectric–ferroelectric phase transition. The continuous nature of these transitions is well reflected in the infrared spectra, which is consistent with the previous X-ray and dielectric findings.  相似文献   

10.
The structure of a new ansa compound, (5-C5H4)CMe2(5-C9H6)TiCl2 (1), was studied by X-ray analysis:a = 15.00(1),b =15.500(5),c = 13.032(4) Å, = 92.66°(4),V = 3025.1(1) Å3, space groupP21/.,R = 0.038. The distorted tetrahedral coordination sphere of the Ti atom is formed by two Cl atoms and two -ligands. It was proposed that the angle () between theC-M direction and the line normal to M-Cp can be considered as one of the geometric parameters characteristic of the structure-properties correlation.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 305–308, February, 1995.  相似文献   

11.
On reaction with Ru3(CO)12, isopropenylbenzene and 4-phenyl-l-butene undergo hydrogenation, to yield the clusters, Ru6C(CO)14(6-C6H5CHMe2) 1 and Ru6C(CO)14(6-C6H5C4H9) 2, respectively. With allylbenzene, both hydrogenation and isomerization occurs affording Ru6C(CO)14(6-C6H5C3H7) 3 and Ru6C(CO)14(6-C6H5C3H5) 4. The structures of 1 and 2 have been established by single crystal X-ray diffraction. One of the Ru–Ru bond lengths in 2 is unusually long and extended Hückel molecular orbital calculations have been used in an attempt to rationalize this feature.  相似文献   

12.
A novel complex [Ce(NO3)5(H2O)2]·2(Hphen)·(H2O) (phen =1,10-phenanthroline) with formula C24H24CeN9O18 and Mr = 866.64 has been synthesized and structurally characterized by X-ray diffraction. It crystallizes in triclinic, space group Pī with a = 7.5534(2), b = 8.083(2), c = 25.8377(6) A, α = 86.847(1), β = 89.937(1), γ = 86.981(1)o, V = 1572.94(6) A3, Dc = 1.830 g/cm3, F(000) = 866, β = 1.545 cm-1 and Z = 2. The final refinement gave R = 0.0486 and wR = 0.1278 for 4852 observed reflections with I > 2σ(I). It consists of discrete [Ce(NO3)5(H2O)2]2- anion, two Hphen+ cations and a lattice water molecule. In the compound, all of the five nitrates are bidentate, and the coordination of Ce(III) is 12. The photo-luminescence of this compound was also investigated.  相似文献   

13.
The thermal decomposition of Dy(III), Tb(III), Gd(III), Eu(III), and Sm(III) propionate monohydrates was studied in argon by means of simultaneous differential thermal analysis and thermogravimetry, infrared-spectroscopy, X-ray diffraction, and optical microscopy. After dehydration, which takes place below 120 °C, all salts decompose into dioxycarbonates with simultaneous release of CO2 and C2H5COC2H5 (3-pentanone) between 250 and 460 °C. However, whereas the anhydrous Dy-, Tb-, and Gd-propionates appear to transform into RE2O2CO3 (rare earth [RE] = Dy, Tb, Gd) in a single step, an intermediate stage involving a RE2O(C2H5CO2)4 composition was evidenced in the case of the Eu- and Sm-propionates. For all compounds, further decomposition of RE2O2CO3 into the corresponding sesquioxides (RE2O3) is accompanied by the release of CO2. The thermal decomposition of Dy- and Tb-propionates occurs entirely in the solid state. In contrast the dehydrated Gd-, Eu-, and Sm-propionates melt at increasingly higher temperatures. Evidence for recrystallization was found in conjunction with the onset of decomposition of these three propionates.  相似文献   

14.
Et4NI,NaSCH2CO2C2H5和Mo(CO)6在乙腈中反应制得一种新的双核钼(0)配合物[Et4N]2-[Mo2(CO)8(SCH2CO2Et)2](1), 电化学和反应性能研究指出1在电位~-0.43V发生一有趣的双电子一步氧化, 产生[Mo2(CO)8(SCH2CO2Et)2], 若氧化反应在配位溶剂中进行, 则其部分羰基被配位溶剂分子所取代成为[Mo2(CO)6(SCH2CO2Et)2L2](L=CH3CN).在1中, Mo…Mo不存在金属键以及MoS2Mo核骨架完全不同于氧化的产物Mo(I)配合物. 这结果完全证实了双电子一步转移是由于双金属中心的金属-金属键的形成或断裂伴随桥联双金属中心结构的重排而产生的推断.  相似文献   

15.
The thermal decomposition of Ho(III), Er(III), Tm(III) and Yb(III) propionate monohydrates in argon was studied by means of thermogravimetry (TG), differential thermal analysis (DTA), IR-spectroscopy and X-ray diffraction (XRD). Dehydration takes place around 90?°C. It is followed by the decomposition of the anhydrous propionates to Ln2O2CO3 (Ln?=?Ho, Er, Tm or Yb) with the evolution of CO2 and 3-pentanone (C2H5COC2H5) between 300 and 400?°C. The further decomposition of Ln2O2CO3 to the respective sesquioxides Ln2O3 is characterized by an intermediate plateau extending from approximately 500?C700?°C in the TG traces. This stage corresponds to an overall composition of Ln2O2.5(CO3)0.5 but is more probably a mixture of Ln2O2CO3 and Ln2O3. The stability of this intermediate state decreases for the lighter rare-earth (RE) compounds studied. Full conversion to Ln2O3 is achieved at about 1,100?°C. The overall thermal decomposition behaviour of the title compounds is similar to that previously reported for Lu(C2H5CO2)3·H2O.  相似文献   

16.
Two Cu(II) hydroxo succinates [Cu3(H2O)2(OH)2(C4H4O4)2]?·?4H2O (1) and [Cu4(H2O)2(OH)4(C4H4O4)2]?·?5H2O (2) and one Cu(II) hydroxo glutarate [Cu5(OH)6(C5H6O4)2]?·?4H2O (3) have been prepared and structurally characterized by single crystal X-ray diffraction methods. They feature 1D and 2D copper oxygen connectivity of elongated {CuO6} octahedra in “4?+?1?+?1” and “4?+?2” coordination geometries. Within 1, linear trimers of three edge-sharing {CuO6} octahedra are connected into copper oxygen chains, which are bridged by the anti conformational succinate anions to generate 2D layers with mono terminally coordinating gauche succinate anions on both sides. The layers are assembled into a 3D framework by interlayer hydrogen bonds with lattice H2O molecules distributed in channels. Different from 1, the principal building units in 2 are linear tetramers of four edge-sharing {CuO6} octahedra. The tetramers are condensed into copper oxygen chains and the succinate anions interlink them into a 3D framework with triangular channels filled by lattice H2O molecules. The {CuO6} octahedra in 3 are edge-shared to form unprecedented 2D inorganic layers with mono terminally coordinating glutarate anions on both sides. Interlayer hydrogen bonding interactions are responsible for supramolecular assembly of the layers into a 3D framework with lattice H2O molecules in the channels. The inorganic layers in 3 can be described as hexagonal close packing of oxygen atoms with the Cu atoms in the octahedral cavities. The title compounds were further characterized by elemental analyses, IR spectra and thermal analyses.  相似文献   

17.
A new heterometallic 4f-5d inorganic-organic metal-isonicotinic acid complex [La(C6NO2H5)3(H2O)2]2n·(nH5O2)(nHgCl5)(2nHgCl4)·(2nH2O) 1 has been synthesized via hydro-thermal reaction and structurally characterized. Complex 1 crystallizes in the space group C2/c of monoclinic system with four formula units in a cell: α= 24.140(7), b = 20.884(7), c = 15.462(2) (A), β = 127.46(1)°,V = 6187(3) (A)3, C36H47Cl13Hg3La2N6O20, Mr = 2224.24, Dc = 2.388 g/cm3, Z = 4, T = 293(2) K, μ(MoKα) = 9.401 mm-1, F(000) = 4160 and R/wR = 0.0376/0.0636 for 4130 observed reflections (I > 2σ(I)) and 5617 unique reflections. Complex 1 is characteristic of a one-dimensional polycationic chain-like structure. Photoluminescent investigation reveals that the title complex displays interesting emissions in violet and orange regions. The luminescence spectra show stronger orange emission than violet emission. Optical absorption spectra of 1 reveal the presence of a wide optical bandgap of 3.41 eV.  相似文献   

18.
IR and NMR data showed that the ionic complex Pd2(CHCC6H5)2(C5H7O2)3(BF3)2BF4 isolated in the reaction Pd(Acac)2 + PA + 5BF3OEt2 (Acac is C5H7O2, PA is phenylacetylene) is an adduct of two complexes, namely, (Acac)PdBF4 and [(PA)2Pd(C3-Acac · BF3)]+(Acac · BF3) (coordinatively unsaturated). On dissolution in deuteroacetone or deuteromethanol, the [(Acac)PdF2BF2Pd(C3-Acac · BF3)(PA)2]+(Acac · BF3) adduct decomposed to Pd(Acac)2, 2BF3 · L (L = (CD3)2CO, CD3OD) and the [L(PA)2Pd(C3-Acac]+BF4 complex.  相似文献   

19.
The pentanuclear complex, [Cu5(SIP)2(HSIP)2(H2O)18](H2O)5 (H3SIP=5-sulfoi-sophthalic acid), has been synthesized by the hydrothermal reaction of CuCl2 with NaH2SIP at 160 ℃, and characterized by single-crystal X-ray diffraction and IR spectrum. The crystal of the complex crystallizes in a trielinic system, space group P1, with a = 7.0018(5), b = 11.9725(8), c = 19.0424(13) A, α = 78.8540(10), β = 85.1710(10),γ = 83.6080(10)~, V = 1553.24(19) A3, Z = 1, C32H60O51S4Cu5, Mr= 1706.74, Dc= 1.825 g/cm3,μ = 1.937 mm-1, F(000) = 869, the final R = 0.0709 and wR = 0.1503 for 4235 observed reflections with I > 2σ(I). The five Cu2+ ions are connected by two symmetry-related tridentate SIP3- ligands and charge-balanced by two monodentate HSIP2- ligands, giving a discrete pentanuclear structure. The pentanuclear copper molecules are linked by hydrogen bonds to form a three-dimensional supramolecular structure. The temperature-dependent magnetic susceptibility data revealed weak ferromagnetic magnetic interactions between the Cu2+ ions.  相似文献   

20.
Two new polyoxovanadates (Co(N(3)C(5)H(15))(2))(2)[{Co(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)]·5H(2)O (1) and (Ni(N(3)C(5)H(15))(2))(2)[{Ni(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)]·8H(2)O (2) (N(3)C(5)H(15) = N-(2-aminoethyl)-1,3-propanediamine) were synthesized under solvothermal conditions and structurally characterized. In both structures the [V(15)Sb(6)O(42)(H(2)O)](6-) shell displays the main structural motif, which is strongly related to the {V(18)O(42)} archetype cluster. Both compounds crystallize in the triclinic space group P1 with a = 14.3438(4), b = 16.6471(6), c = 18.9186(6) ?, α = 87.291(3)°, β = 83.340(3)°, γ = 78.890(3)°, and V = 4401.4(2) ?(3) (1) and a = 14.5697(13), b = 15.8523(16), c = 20.2411(18) ?, α = 86.702(11)°, β = 84.957(11)°, γ = 76.941(11)°, and V = 4533.0(7) ?(3) (2). In the structure of 1 the [V(15)Sb(6)O(42)(H(2)O)](6-) cluster anion is bound to a [Co(N(3)C(5)H(15))(2)](2+) complex via a terminal oxygen atom. In the Co(2+)-centered complex, one of the amine ligands coordinates in tridentate mode and the second one in bidentate mode to form a strongly distorted CoN(5)O octahedron. Similarly, in compound 2 an analogous NiN(5)O complex is joined to the [V(15)Sb(6)O(42)(H(2)O)](6-) anion via the same attachment mode. A remarkable difference between the two compounds is the orientation of the noncoordinated propylamine group leading to intermolecular Sb···O contacts in 1 and to Sb···N interactions in 2. In the solid-state lattices of 1 and 2, two additional [M(N(3)C(5)H(15))(2)](2+) complexes act as countercations and are located between the [{M(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)](4-) anions. Between the anions and cations strong N-H···O hydrogen bonds are observed. In both compounds the clusters are stacked along the b axis in an ABAB fashion with cations and water molecules occupying the space between the clusters. Magnetic characterization demonstrates that the Ni(2+) and Co(2+) cations do not significantly couple with the S = 1/2 vanadyl groups. The susceptibility data can be successfully reproduced assuming a distorted ligand field for the Co(2+) ions (1) and an O(h)-symmetric Ni(2+) ligand field (2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号