首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The suspension characteristics of water droplet in oil were investigated under ultrasonic standing waves with high-speed photography in this paper. Firstly, the suspension position of droplet was predicted by theoretical derivation. The motion trajectory of droplet was captured and a kinetic analysis was applied to characterize the suspension position of droplet. The effects of droplet size, acoustic pressure, frequency, as well as density ratio of water and oil on the suspension position of droplet were analyzed in details. It was proved that the droplet size had little effect on the suspension position at different frequencies. The suspension zone approached minimum at 39.4 kHz, and the suspension position of droplet was insensitive to acoustic pressure amplitude and density ratio at this frequency. These would be advantageous to maintain the stability of droplet banding and shorten the width of banding. In addition, it was proved that the suspension position of droplet is approximately linear with the density ratio at different frequencies.  相似文献   

2.
The coalescence process of binary droplets in oil under ultrasonic standing waves was investigated with high-speed photography. Three motion models of binary droplets in coalescence process were illustrated: (1) slight translational oscillation; (2) sinusoidal translational oscillation; (3) migration along with acoustic streaming. To reveal the droplets coalescence mechanisms, the influence of main factors (such as acoustic intensity, droplet size, viscosity and interfacial tension, etc) on the motion and coalescence of binary droplets was studied under ultrasonic standing waves. Results indicate that the shortest coalescence time is achieved when binary droplets show sinusoidal translational oscillation. The corresponding acoustic intensity in this case is the optimum acoustic intensity. Under the optimum acoustic intensity, drop size decrease will bring about coalescence time decrease by enhancing the binary droplets oscillation. Moreover, there is an optimum interfacial tension to achieve the shortest coalescence time.  相似文献   

3.
Ultrasonic emulsification of oil and water was carried out and the effect of irradiation time, irradiation power and physicochemical properties of oil on the dispersed phase volume and dispersed phase droplet size has been studied. The increase in the irradiation time increases the dispersed phase volume while decreases the dispersed phase droplets size. With an increase in the ultrasonic irradiation power, there is an increase in the fraction of volume of the dispersed phase while the droplet size of the dispersed phase decreases. The fractional volume of the dispersed phase increases for the case of groundnut oil-water system while it is low for paraffin (heavy) oil-water system. The droplet size of soyabean oil dispersed in water is found to be small while that of paraffin (heavy) oil is found to be large. These variations could be explained on the basis of varying physicochemical properties of the system, i.e., viscosity of oil and the interfacial tension. During the ultrasonic emulsification, coalescence phenomenon which is only marginal, has been observed, which can be attributed to the collision of small droplets when the droplet concentration increases beyond a certain number and the acoustic streaming strength increases.  相似文献   

4.
The motion of a single water droplet in oil under ultrasonic irradiation is investigated with high-speed photography in this paper. First, we described the trajectory of water droplet in oil under ultrasonic irradiation. Results indicate that in acoustic field the motion of water droplet subjected to intermittent positive and negative ultrasonic pressure shows obvious quasi-sinusoidal oscillation. Afterwards, the influence of major parameters on the motion characteristics of water droplet was studied, such as acoustic intensity, ultrasonic frequency, continuous phase viscosity, interfacial tension, and droplet diameter, etc. It is found that when the acoustic intensity and frequency are 4.89 W cm−2 and 20 kHz respectively, which are the critical conditions, the droplet varying from 250 to 300 μm in lower viscous oil has the largest oscillation amplitude and highest oscillation frequency.  相似文献   

5.
Ultrasound is an emerging and promising method for demulsification, which is highly affected by acoustic parameters and emulsion properties. Herein, a series of microscopic and dehydration experiments are carried out to investigate the parameter optimization of ultrasonic separation. The results show that the optimal acoustic parameters highly depend on the emulsion properties. For low frequency ultrasonic standing waves (USWs), mechanical vibrations not only facilitate droplet collision and coalescence, but also disperse the surfactant absorbed on the interface to decrease the interfacial strength. Therefore, low frequency ultrasound is suitable for separating emulsions with high viscosity and high interfacial strength. Increasing the energy density to produce moderate cavitation can increase demulsification efficiency. However, excessive cavitation results in secondary emulsification. In high frequency USWs, the droplets migrate directionally and form bandings, thereby promoting droplet coalescence. Therefore, high frequency ultrasound is favorable for separating emulsions with low dispersed phase content and small droplet size. Increasing the energy density can accelerate the aggregation of droplets, however, excessive energy density causes acoustic streaming that disturbs the aggregated droplets, resulting in reduced demulsification efficiency. This work presents rules for acoustic parameter optimization, further advancing industrial applications of ultrasonic separation.  相似文献   

6.
In droplet-based microfluidic platforms, precise separation of microscale droplets of different chemical composition is increasingly necessary for high-throughput combinatorial chemistry in drug discovery and screening assays. A variety of droplet sorting methods have been proposed, in which droplets of the same kind are translocated. However, there has been relatively less effort in developing techniques to separate the uniform-sized droplets of different chemical composition. Most of the previous droplet sorting or separation techniques either rely on the droplet size for the separation marker or adopt on-demand application of a force field for the droplet sorting or separation. The existing droplet microfluidic separation techniques based on the in-droplet chemical composition are still in infancy because of the technical difficulties. In this study, we propose an acoustofluidic method to simultaneously separate microscale droplets of the same volume and dissimilar acoustic impedance using ultrasonic surface acoustic wave (SAW)-induced acoustic radiation force (ARF). For extensive investigation on the SAW-induced ARF acting on both cylindrical and spherical droplets, we first performed a set of the droplet sorting experiments under varying conditions of acoustic impedance of the dispersed phase fluid, droplet velocity, and wave amplitude. Moreover, for elucidation of the underlying physics, a new dimensionless number ARD was introduced, which was defined as the ratio of the ARF to the drag force acting on the droplets. The experimental results were comparatively analyzed by using a ray acoustics approach and found to be in good agreement with the theoretical estimation. Based on the findings, we successfully demonstrated the simultaneous separation of uniform-sized droplets of the different acoustic impedance under continuous application of the acoustic field in a label-free and detection-free manner. Insomuch as on-chip, precise separation of multiple kinds of droplets is critical in many droplet microfluidic applications, the proposed acoustofluidic approach will provide new prospects for microscale droplet separation.  相似文献   

7.
The removal of the adsorbed oil droplet is critical to deoiling treatment of oil-bearing solid waste. Ultrasonic cavitation is regarded as an extremely useful method to assist the oil droplets desorption in the deoiling treatment. In this paper, the effects of cavitation micro-jets on the oil droplets desorption were studied. The adsorbed states of oil droplets in the oil-contaminated sand were investigated using a microscope. Three representative absorbed states of the oil droplets can be summarized as: (1) the individual oil droplet adsorbed on the particle surface (2) the clustered oil droplets adsorbed on the particle surface; (3) the oil droplet adsorbed in a gap between particles. The micro-jet generation during the bubble collapse near a rigid wall under different acoustic pressure amplitudes at an ultrasonic frequency of 20 kHz was investigated numerically. The desorption processes of the oil droplets at the three representative absorbed states under micro-jets were also simulated subsequently. The results showed that the acoustic pressure has a great influence on the velocity of micro-jet, and the initial diameter of cavitation bubbles is significant for the cross-sectional area of micro-jets. The wall jet caused by a micro-jet impacting on the solid wall is the most important factor for the removal of the absorbed oil droplets. The oil droplet is broken by the jet impinging, and then it breaks away from the solid wall due to the shear force generated by the wall jet. In addition to a higher sound pressure, the cavitation bubble at a larger initial diameter is more important for the desorption of the clustered oil droplets. Conversely, the micro-jet generated by the cavitation bubble at a smaller initial diameter (0.1 mm) is more appropriate for the desorption of the oil droplet in a narrow or sharp-angled gap.  相似文献   

8.
The present work deals with measurements of the droplet size distribution in an ultrasonic atomizer using photographic analysis with an objective of understanding the effect of different equipment parameters such as the operating frequency, power dissipation and the operating parameters such as the flow rate and liquid properties on the droplet size distribution. Mechanistic details about the atomization phenomena have also been established using photographic analysis based on the capture of the growth of the instability and sudden ejection of droplets with high velocity. Velocity of these droplets has been measured by capturing the motion of droplets as streaks. It has been observed that the droplet size decreases with an increase in the frequency of atomizer. Droplet size distribution was found to change from the narrow to wider range with an increase in the intensity of ultrasound. The drop size was found to decrease with an increase in the fluid viscosity. The current work has clearly highlighted the approach for the selection of operating parameters for achieving a desired droplet size distribution using ultrasonic atomization and has also established the controlling mechanisms for the formation of droplet. An empirical correlation for the prediction of the droplet size has been developed based on the liquid and equipment operating properties.  相似文献   

9.
关昭  梁威 《应用声学》2019,38(2):208-216
该文提出利用兰姆波在倾斜的镜子基板上推动油水混合液滴,实现油水的微分离。实验主要研究了油水混合液滴在分离过程中的运动位移特性关系。运用Navier-Stokes、声流力等方程进行理论分析,发现混合液滴在分离过程中水滴所受到的驱动力大于油滴。通过对实验多变量的控制、单一变量的研究、建立油水混合液滴在倾斜镜子基板上受力平衡方程,发现激发电压、油水混合比例、基板倾角三个因素对油水微分离位移实验有着重要的影响。结果表明:当基板倾角和油水混合比例一定时,油水分离位移随着激发电压的增大而减小;在激发电压和基板倾角不变时,油水分离位移随着油水混合比例的减小而减小;当激发电压和油水混合比例不变时,油水分离位移随着基板倾角的增大而减小。该油水分离方法可以被应用到其他非压电基板上,为获得其他两种不相溶混合液滴的分离提供技术支持。  相似文献   

10.
Coalescence of water droplets in crude oil has been effectively promoted by chemical demulsifiers integrated with ultrasound. Temporary images of water droplets in W/O emulsions were directly monitored using a metallurgical microscope. Water droplets achieved expansion of 118% at 40 min ultrasonic irradiation time under well mixing conditions. However, water droplets in heavy crude oil undergo less aggregation than those in light crude oil, due to resistance of mobility in highly viscous fluid. In the absence of chemical demulsifiers, water droplets enveloped by native surfactants appeared to aggregate arduously because of occurrence of interfacial tension gradients. Influential significance analyses have been executed by a factorial design method on operation variables, including acoustic power intensity, operation temperature, ultrasonic irradiation time and chemical demulsifier dosages. In this work, the outcomes indicate that the optimal operating conditions for desalination of crude oil assisted by ultrasound were as follows: acoustic power intensity = 300 W, operation temperature = 90℃, ultrasonic irradiation time = 75 min and chemical demulsifier dosages = 54 mg/L. Besides, it was found that the most influential importance of operation parameter was temperature, followed with acoustic power intensity, ultrasonic irradiation time and chemical demulsifier dosages.  相似文献   

11.
This paper examines the vaporization of individual dodecafluoropentane droplets by the application of single ultrasonic tone bursts. High speed video microscopy was used to monitor droplets in a flow tube, while a focused, single element transducer operating at 3, 4, or 10 MHz was aimed at the intersection of the acoustical and optical beams. A highly dilute droplet emulsion was injected, and individual droplets were positioned in the two foci. Phase transitions of droplets were produced by rarefactional pressures as low as 4 MPa at 3 MHz using single, 3.25 micros tone bursts. During acoustic irradiation, droplets showed dipole-type oscillations along the acoustic axis (average amplitude 1.3 microm, independent of droplet diameter which ranged from 5 to 27 microm). The onset of vaporization was monitored as either spot-like, within the droplet, or homogeneous, throughout the droplet's imaged cross section. Spot-like centers of nucleation were observed solely along the axis lying parallel to the direction of oscillation and centered on the droplet. Smaller droplets required more acoustic intensity for vaporization than larger droplets, which is consistent with other experiments on emulsions.  相似文献   

12.
The emphasis of this study is on the ejection of single droplets of a certain size under pulsed ultrasound. Droplet ejection from an interface of two immiscible liquids in this mode, which differs from the well-known ultrasonic fountain (where liquid droplets arise spontaneously), has been experimentally implemented and investigated. The spatial and time evolution of the interface deformation and violation of interface integrity, caused by pulsed acoustic radiation pressure, has been recorded with a high-speed video camera. It is shown that, depending on the ultrasound intensity, three characteristic modes of interface response can be distinguished. In the first (low-intensity)mode, the interface undergoes forced oscillations, without violation of its integrity. In the second (intermediate-intensity) mode, which is in the focus of our study, the interface integrity is violated due to the ejection of a single droplet of a certain size; the latter continuously changes its shape when moving in the second liquid. In the third (high-intensity) mode, the predictable ejection of droplets of a predictable size turns into stochastic ejection of multiple droplets with unpredictable sizes. The dependence of the sizes of single droplets on the parameters of focused ultrasound beam have been measured in the second (stable) mode of ultrasound ejection. Based on these measurements, the range of ultrasound parameters providing controlled generation of single droplets of a specified size is estimated. Differences in the dynamics of interface motion and specific features of droplet generation for the liquid/liquid interface in comparison with the liquid/gas interface are indicated. Possible applications of the observed effects are discussed.  相似文献   

13.
This paper presents an exploration for separation of oil-in-water and coalescence of oil droplets in ultrasound field via lattice Boltzmann method. Simulations were conducted by the ultrasound traveling and standing waves to enhance oil separation and trap oil droplets. The focus was to the effect of ultrasound irradiation on oil-in-water emulsion properties in the standing wave field, such as oil drop radius, morphology and growth kinetics of phase separation. Ultrasound fields were applied to irradiate the oil-in-water emulsion for getting flocculation of the oil droplets in 420 kHz case, and larger dispersed oil droplets and continuous phases in 2 MHz and 10 MHz cases, respectively. The separated phases started to rise along the direction of sound propagation after several periods. The rising rate of the flocks was significantly greater in ultrasound case than that of oil droplets in the original emulsion, indicating that ultrasound irradiation caused a rapid increase of oil droplet quantity in the progress of the separation. The separation degree was also significantly improved with increasing frequency or irradiation time. The dataset was rearranged for growth kinetics of ultrasonic phase separation in a plot by spherically averaged structure factor and the ratio of oil and emulsion phases. The analyses recovered the two different temporal regimes: the spinodal decomposition and domain growth stages, which further quantified the morphology results. These numerical results provide guidance for setting the optimum condition for the separation of oil-in-water emulsion in the ultrasound field.  相似文献   

14.
Correlations to predict droplet size in ultrasonic atomisation.   总被引:2,自引:0,他引:2  
R Rajan  A B Pandit 《Ultrasonics》2001,39(4):235-255
In conventional two fluid nozzles, the high velocity air imparts its energy to the liquid and disrupts the liquid sheet into droplets. If the energy for liquid sheet fragmentation can be supplied by the use of ultrasonic energy, finer droplets with high sphericity and uniform size distribution can be achieved. The other advantage of ultrasound induced atomisation process is the lower momentum associated with ejected droplets compared to the momentum carried by the droplets formed using conventional nozzles. This has advantage in coating and granulation processes. An ultrasonic probe sonicator was designed with a facility for liquid feed arrangement and was used to atomise the liquid into droplets. An ingenious method of droplet measurement was attempted by capturing the droplets on a filter paper (size variation with regard to wicking was uniform in all cases) and these are subjected to image analysis to obtain the droplet sizes. This procedure was evaluated by high-speed photography of droplets ejected at one particular experimental condition and these were image analysed. The correlations proposed in the literature to predict droplet sizes using ultrasound do not take into account all the relevant parameters. In this work, a truly universal correlation is proposed which accounts for the effects of physico-chemical properties of the liquid (flow rate, viscosity, density and surface tension), and ultrasonic properties like amplitude, frequency and the area of vibrating surface. The significant contribution of this work is to define dimensionless numbers incorporating ultrasonic parameters, taking cue from the conventional numbers that define the significance of different forces involved in droplet formation. The universal correlations proposed are robust and can be used for designing ultrasonic atomisers for different applications. Among the correlations proposed here, those ones that are based on the dimensionless numbers and Davies approach predict droplet sizes within acceptable limits of deviation. Also, an empirical correlation from experimental data has been proposed in this work.  相似文献   

15.
液滴沉降过程中会与环境水汽发生物质交换.论文通过小尺度室内实验,研究了低频声波作用下液滴碰并沉降及其与气室环境水汽氢氧同位素交换特征.研究结果证实液滴沉降过程中存在同位素交换,该过程受声波显著影响.声波作用后液滴粒径增大,液滴沉降后汇集水中重同位素出现富集.液滴与环境水汽氢氧同位素交换强度与液滴初始粒径呈正相关,声波对...  相似文献   

16.
Water in oil emulsions are prepared by using an ultra-sonication device and used in an emulsion liquid membrane process in order to recover arsenic (V) ions from an aqueous medium. The aim of this work is the investigation of the effect of emulsifier concentration and composition, and also sonication time on the emulsion droplet size and the extraction efficiency in order to obtain stable emulsions with small droplets that favor the extraction. Results show that ultrasonic waves reduce internal droplet size which enhances the extraction of arsenic. In addition, internal droplet size is decreased initially and then increased by increasing Span 80 concentration. On the other hand, by increasing Span 80 concentration, extraction amount is increased and then decreased. Furthermore, emulsifier blends provide more stability for the emulsion. Increasing concentration of Tween 20 as a hydrophilic emulsifier up to an optimum concentration decreases internal droplet size and increases extraction amount. By increasing sonication time up to 4 min, the internal droplet size is decreased and the extraction amount is increased. If sonication time is increased further, the internal droplet size is increased and the extraction amount is decreased.  相似文献   

17.

It is found experimentally that a mesoscopic droplet phase is formed in low-concentration aqueous solutions of various polar organic compounds, which are considered in the chemical literature as infinitely soluble in water. The content of dissolved organic molecules in droplets is much higher than in the ambient solution. The droplet size increases with temperature. Theory can explain the mesodroplet formation by the phase separation of a binary mixture affected by the dichotomous noise of twinkling hydrogen bonds between molecules of organic compound and water. The Snyder polarity index, which is used by chemists as a miscibility criterion for molecular compounds, depends in the model on the dipole moments of mixed molecules and the energy and number of hydrogen bonds. With this refinement, it can be used as an estimation criterion for the existence and intensity (i.e., the number of droplets per unit volume of organic aqueous solution) of mesodroplet separation.

  相似文献   

18.
In recent years the use of high frequency ultrasound standing waves (megasonics) for droplet or cell separation from biomass has emerged beyond the microfluidics scale into the litre to industrial scale applications. The principle for this separation technology relies on the differential positioning of individual droplets or particles across an ultrasonic standing wave field within the reactor and subsequent biomass material predisposition for separation via rapid droplet agglomeration or coalescence into larger entities. Large scale transducers have been characterised with sonochemiluminescence and hydrophones to enable better reactor designs. High frequency enhanced separation technology has been demonstrated at industrial scale for oil recovery in the palm oil industry and at litre scale to assist olive oil, coconut oil and milk fat separation. Other applications include algal cell dewatering and milk fat globule fractionation. Frequency selection depends on the material properties and structure in the biomass mixture. Higher frequencies (1 and 2 MHz) have proven preferable for better separation of materials with smaller sized droplets such as milk fat globules. For palm oil and olive oil, separation has been demonstrated within the 400–600 kHz region, which has high radical production, without detectable impact on product quality.  相似文献   

19.
舒霞云  欧阳丽  常雪峰  徐钢 《应用声学》2023,42(6):1244-1255
针对现有的喷墨打印技术需根据喷印材料的特性定制而较难直接用于不同材料打印的问题,设计了一种基于菲涅尔透镜聚焦的声泳打印装置,该装置由超声发生器、超声换能器、菲涅尔透镜以及供液系统组成。首先,利用COMSOL软件模拟液滴在声辐射力作用下的滴落过程,并分析了超声发生器功率、喷嘴到基底距离、菲涅尔透镜厚度等参数对声场压力分布的影响,以及声场压力、喷嘴直径及材料粘度对液滴喷射过程的影响。其次,采用构建的声泳打印装置进行喷射成滴实验,通过调整超声发生器输出功率实现了不同粘度的聚乙二醇溶液的喷射以及UV胶的喷射。实验结果表明:该微滴喷射系统能产生一致性较好的微滴,喷印出的微透镜尺寸波动范围在2%以内,证明了该装置的稳定性以及实现了不同材料微滴喷射的可行性。  相似文献   

20.
An ultrasonic technique was applied to preparation of two-phase water-in-oil (W/O) emulsified fuel of water/diesel oil/surfactant. In this study, an ultrasonic apparatus with a 28 kHz rod horn was used. The influence of the horn tip position during ultrasonic treatment, sonication time and water content (5 or 10 vol%) on the emulsion stability, viscosity, water droplet size and water surface area of emulsion fuels prepared by ultrasonication was investigated. The emulsion stability of ultrasonically-prepared fuel significantly depended on the horn tip position during ultrasonic irradiation. It was found that the change in the stability with the horn tip position was partly related to that in the ultrasonic power estimated by calorimetry. Emulsion stability, viscosity and sum of water droplets surface area increased and water droplet size decreased with an increase in sonication time, and they approached each limiting value in the longer time. The maximum values of the viscosity and water surface area increased with water content, while the limiting values of the emulsion stability and water droplet size were almost independent of water content. During ultrasonication of water/diesel oil mixture, the hydrogen and methane were identified and the cracking of hydrocarbon components in the diesel oil occurred. The combustion characteristics of ultrasonically-prepared emulsion fuel were studied and compared with those of diesel oil. The soot and NOx emissions during combustion of the emulsified fuel with higher water contents were significantly reduced compared with those during combustion of diesel oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号