首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This study deals with preparation and evaluation of properties of chitosan/zinc oxide bionanocomposites (CT/ZnO BNCs) with different amounts of modified zinc oxide nanoparticles (ZnO NPs) through ultrasonic irradiation technique. Due to the high surface energy and tendency for agglomeration, the surface ZnO NPs was modified by a coupling agent as 3-aminopropyltriethoxysilane (APS) to form APS–ZnO nanoparticles. Fourier transform infrared (FTIR) spectroscopy confirmed that APS was successfully grafted onto the ZnO nanoparticles surface. Thermogravimetric analysis (TGA) revealed a surface coverage of the coupling molecule of 2.6 wt%. The resulting bionanocomposites were characterized by FTIR spectra, X-ray diffraction patterns, and TGA. The antibacterial activity of bionanocomposite films was tested against gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). The results of CT/ZnO BNCs revealed that the thermal and antibacterial properties obviously improved the presence of ZnO NPs in comparison with the pure CT and that this increase is higher when the NP content increases. Further, it was observed that antibacterial activity of the resulting hybrid biofilms showed somewhat higher for gram-positive bacteria compared to gram-negative bacteria.  相似文献   

2.
The effect of ultrasonic irradiation (40 kHz) on the calcium carbonate deposition on bacterial cellulose membranes was investigated using calcium chloride (CaCl2) and sodium carbonate (Na2CO3) as starting reactants. The composite materials containing bacterial cellulose-calcium carbonate were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and color measurements. The polymorphs of calcium carbonate that were deposited on bacterial cellulose membranes in the presence or in the absence of ultrasonic irradiation were calcite and vaterite. The morphology of the obtained crystals was influenced by the concentration of starting solutions and by the presence of ultrasonic irradiation. In the presence of ultrasonic irradiation the obtained crystals were bigger and in a larger variety of shapes than in the absence of ultrasounds: from cubes of calcite to spherical and flower-like vaterite particles. Bacterial cellulose could be a good matrix for obtaining different types of calcium carbonate crystals.  相似文献   

3.
A new type of multicoated silica/zirconia/silver (SiO2/ZrO2/Ag) core-shell composite microspheres is synthesized in this paper. In the process, ZrO2-decorated silica (SiO2/ZrO2) core-shell composites were firstly fabricated by the modification of zirconia on silica microspheres through the hydrolysis of zirconium precursor. Subsequently, on SiO2/ZrO2 composite cores, silver nanoparticles were introduced via ultrasonic irradiation and acted as “Ag seeds” for the formation of integrate silver shell by further reduction of silver ions using formaldehyde as reducer. The resulting samples were characterized by transmission electron microscopy, X-ray diffraction, Fourier-transform infrared, energy-dispersive X-ray, and UV-vis spectroscopy, indicating that zirconia and silver layers were successfully coated on the surfaces of silica microspheres.  相似文献   

4.
In this study, we report on the gas permeability of non-polymerized and polymerized fullerene films (thickness about 0.5 μm) grown on an organic polymer substrate, polycarbonatesyloxane (PCS), using a high vacuum deposition method. The photopolymerized C60 films were prepared by a simultaneous thin film deposition and UV-vis irradiation method which was reported previously [V.A. Karachevtsev, P.V. Mateichenko, N.Y. Nedbailo, A.V. Peschanskii, A.M. Plokhotnichenko, O.M. Vovk, E.N. Zubarev, A.M. Rao, Carbon 42 (2004) 2091]. Raman spectroscopy revealed that ∼90% of the C60 molecules are covalently linked to neighboring C60 molecules in the photopolymerized film after 20 h of film deposition/irradiation. Permeability of the resulting membranes consisting of polymer PCS base and fullerene films to the N2, O2, CH4, and He gases has been investigated. Our experiments revealed that the gas permeability properties are dependent on the age of the membrane. In particular, the aged membrane exhibited an enhanced permeability for O2 and He gases in comparison to N2 and CH4, respectively.  相似文献   

5.
《Solid State Ionics》2009,180(40):1694-1701
Fe-silicalite/Nafion composite membranes with high relative selectivity (as defined by the proton conductivity to methanol permeability ratio) of 5.4 and proton conductivity of 11 mS cm 1 were prepared by in situ hydrothermal synthesis of the zeolite within the pores of Nafion membranes. The effects of the zeolite structure and precursor structure were evaluated in terms of transport properties and acidity levels for a series of Nafion membranes modified with silica and tetrapropylammonium (TPA) and tetrabutylammonium (TBA) cations. Introduction of up to 40% (w/w) of silica vs. pure Nafion shows little effect on the transport and acidity properties of the composite membranes. Introduction of tetraalkylammonium (TAA) cations reduces water uptake of the membranes, and results in the appearance of protons that are inaccessible for titration in water media. The selectivity of the composite membranes increases in the order: SiO2/Nafion < TAA/Nafion < Fe-silicalite/Nafion.  相似文献   

6.
A core–shell-type of meso-SiO2@Fe3O4 microsphere was synthesized via an ultrasonic-assisted surfactant-templating process using solvothermal synthesized Fe3O4 as core, tetraethoxysilane (TEOS) as silica source, and cetyltrimethyl ammonium bromide (CTAB) as templates. The samples were characterized by FT-IR, XRD, TEM, N2 adsorption–desorption technology, and vibrating sample magnetometer (VSM). The results show that as-prepared meso-SiO2@Fe3O4(E) and meso-SiO2@Fe3O4(C) microspheres, treated by acetone extraction and high temperature calcination, respectively, still maintain uniform core–shell structure with desirable mesoporous silica shell. Therein, the meso-SiO2@Fe3O4(E) microspheres possess a distinct pore size distribution in 1.8–3.0 nm with large specific surface area (468.6 m2/g) and pore volume (0.35 cm3/g). Noteworthily, the coating period of this ultrasonic-assisted method (40 min) is much shorter than that of the conventional method (12–24 h). The morphology of microspheres and the mesoporous structure of silica shell are significantly influenced by initial concentration of CTAB (CCTAB), ultrasonic irradiation power (P) and ultrasonic irradiation time (t). The acceleration roles of ultrasonic irradiation take effect during the whole coating process of mesoporous silica shell, including hydrolysis-condensation process of TEOS, co-assembly of hydrolyzed precursors and CTAB, and deposition of silica oligomers. In addition, the use of ultrasonic irradiation is favorable for improving the homogeneity of silica shell and the monodispersity of meso-SiO2@Fe3O4 microspheres.  相似文献   

7.
The effect of ultrasound irradiation on molybdenum trioxide has been investigated. Under ultrasonic irradiation, spherical-like MoO3 nanoparticles were obtained, while bulk-like MoO3 nanoparticles were prepared without ultrasonic irradiation. The changes in the physicochemical properties of MoO3 have been investigated using techniques such as X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and ultraviolet and visible spectroscopy (UV-vis). The physicochemical changes of MoO3 due to ultrasound irradiation have been attributed to the sonochemical cavity collapse onto the molybdenum trioxide particles. The ultrasonically prepared particles can also greatly improve the photochromism efficiency.   相似文献   

8.
In this paper, the monodisperse silica nanoparticles were prepared by ultrasonic-assisted Stober method, and it explained that the ultrasonic cavitation effect shortened the reaction time from the original hours to f5 min. The effects of ultrasonic time, ultrasonic power, and stirring speed on the morphology, composition, and specific surface area of silica nanoparticles were investigated by field emission electron microscopy (FE-SEM). The results showed that nanoparticles with the best dispersity and the most uniform morphology were obtained under the optimized conditions (ultrasonic time is 5 min, ultrasonic power is 160 W, and the magnetic stirring speed is 999 rpm). The phase composition of SiO2 was characterized by high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), nano-size/zeta potential analyzer, and Fourier transform infrared spectroscopy (FT-IR). It showed that all typical peaks of samples are in line with the SiO2 spectrum, the particle size distribution and zeta potential value of the silica is 615?±?35.6 nm and 59.87?±?0.91 mv, respectively, which further verified that the spherical silica nanoparticles with good dispersity can be synthesized in a very short time. Hemolysis test showed that nano-SiO2 had high blood compatibility and biocompatibility when its concentration was less than 1 mg/mL. Doxorubicin (DOX·HCl) was regarded as a drug model to investigate the drug loading capacity of synthesized SiO2; the results showed that the drug loading capacity and encapsulation efficiency reached 42.6?±?1.2 and 85.2?±?2.5%, respectively. Furthermore, the drug release experiments fitted well with the Higuichi equation with correlation coefficient (R2) of 0.9984, which further confirmed that the SiO2/DOX drug delivery system has the controlled release property, and it also displayed pH-responsive behavior (at 96 h, the cumulative release of SiO2/DOX in PBS solution with pH 7.4, 6.5, and 5.0 was 48.33, 62.31, and 94.86%, respectively). Therefore, this paper provides the possibility for developing more effective, safer, and more targeted controlled drug carriers.  相似文献   

9.
《Composite Interfaces》2013,20(5-7):603-614
In this study composites of high density polyethylene (HDPE) with various SiO2 content were prepared by melt compounding using maleic anhydride grafted polyethylene (PE-g-MAH) as a compatibilizer. The composites containing 2, 4 and 6% by weight of SiO2 particles were melt-blended in a co-rotating twin screw extruder. In all composites, polyethylene-graft-maleic anhydride copolymer (PE-g-MAH, with 0.85% maleic anhydride content) was added as a compatibilizer in the amount of 2% by weight. Morphology of inorganic silica filler precipitated from emulsion media was investigated. Mechanical properties and composite microstructure were determined by tensile tests and scanning electron microscopy technique (SEM). Tensile strength, yield stress, Young's modulus and elongation at break of PE/SiO2 composites were mainly discussed against the properties of PE/PE-g-MAH/SiO2 composites. The most pronounced increase in mechanical parameters was observed in Young's modulus for composites with polyethylene grafted with maleic anhydride. The increase in the E-modulus of PE/PE-g-MAH/SiO2composites was associated with the compatibility and improvement of interfacial adhesion between the polyethylene matrix and the nanoparticles, leading to an increased degree of particle dispersion. This finding was verified on the basis of SEM micrographs for composites of PE/PE-g-MAH/4% by weight of SiO2. The micrographs clearly documented that addition of only 2 wt% of the compatibilizer changed the composite morphology by reducing filler aggregates size as well as their number. Increased adhesion between the PE matrix and SiO2 particles was interpreted to be a result of interactions taking place between the polar groups of maleic anhydride and silanol groups on the silica surface. These interactions are responsible for reduction of the size of silica aggregates, leading to improved mechanical properties.  相似文献   

10.
Nano-spinel ferrites synthesized via chemical co-precipitation method are small in size and have serious agglomeration phenomenon, which makes separation difficult in the subsequent process. Ni0.4Cu0.2Zn0.4Fe2O4 ferrites nanoparticles were synthesized via co-precipitation assisted with ultrasonic irradiation produced by ultrasonic cleaner with 20 kHz frequency using chlorinated salts and KOH as initial materials. The effects of ultrasonic power (0, 40 W, 60 W, 80 W) and reaction temperature on the microstructure and magnetic properties of ferrite nanoparticles were investigated. The structure analyses via XRD revealed the successful formation of pure (NiCuZn)Fe2O4 ferrites nanospinel without any impurity. The crystallites sizes were less than 40 nm and the lattice constant was near 8.39 Å. The TEM showed ferrite particle polygonal. M−H analyses performed the saturation magnetization and coercivity of ferrite nanoparticles obtained at the reaction temperature of 25℃ were higher than at 50℃ with same power. The samples exhibited the highest values of Ms 55.67 emu/g at 25℃ and 47.77 emu/g at 50℃ for 60 W and the lowest values of Hc 71.23 Oe at 25℃ for 40 W and 52.85 Oe at 50℃ for 60 W. The squareness ratio (SQR) were found to be lower than 0.5, which revealed the single magnetic domain nature (NiCuZn)Fe2O4 nanoparticles. All the outcomes show the ultrasonic irradiation has positive effects on improving the microstructure and increasing magnetic properties.  相似文献   

11.
Abstract

New organic–inorganic nanocomposites based on PVA, SiO2 and SSA were prepared in a single step using a solution casting method, with the aim to improve the thermomechanical properties and ionic conductivity of PVA membranes. The structure, morphology, and properties of these membranes were characterized by Raman spectroscopy, small- and wide-angle X-ray scattering (SAXS/WAXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), water uptake (Wu) measurements and ionic conductivity measurements. The SAXS/WAXS analysis showed that the silica deposited in the form of small nanoparticles (~ 10?nm) in the PVA composites and it also revealed an appreciable crystallinity of pristine PVA membrane and PVA/SiO2 membranes (decreasing with increasing silica loading), and an amorphous structure of PVA/SSA and PVA/SSA/SiO2 membranes with high SSA loadings. The thermal and mechanical stability of the nanocomposite membranes increased with the increasing silica loading, and silica also decreased the water uptake of membranes. As expected, the ionic conductivity increased with increasing content of the SSA crosslinker, which is a donor of the hydrophilic sulfonic groups. Some of the PVA/SSA/SiO2 membranes had a good balance between stability in aqueous environment (water uptake), thermomechanical stability and ionic conductivity and could be potential candidates for proton exchange membranes (PEM) in fuel cells.  相似文献   

12.
Gas transport behaviors of oxygen (O2), nitrogen (N2) and propylene (C3H6) in polydimethylsiloxane (PDMS) mixed matrix membranes (MMM) containing modified silica (SiO2) nanoparticles are presented. Two surface modified SiO2 nanoparticles, silica dimethyloctyl silane (Si-DMOS) and silica dimethylphenyl silane (Si-DMPS), were used as fillers. Surface modification was carried out through silanization, which was confirmed via Fourier transform infrared spectroscopy. From elemental analysis, degrees of modifications on Si-DMOS and Si-DMPS were estimated to be 29.64% and 79.89%, respectively. Field emission scanning electron microscopy showed uniform distribution of the modified SiO2 fillers in MMMs. Both MMMs exhibited reduced O2 and N2 permeabilities as compared to pure PDMS, while enhanced C3H6 permeabilities were observed. Consequently, C3H6/N2 permselectivities were increased by 35 and 44% in MMMs filled with Si-DMOS and Si-DMPS, respectively. Results revealed that permeability was dependent on penetrant diffusivities, a parameter related to the structure of MMMs. Density measurements and differential scanning calorimetry were performed to elucidate the changes in MMM properties which affected the permeation behaviors of O2, N2 and C3H6. Overall, both Si-DMOS and Si-DMPS show potential as fillers for the enhancement of PDMS permeation performance.  相似文献   

13.
The magnetite nanoparticles were synthesized in an ethanol–water solution under ultrasonic irradiation from a Fe(OH)2 precipitate. XRD, TEM, TG, IR, VSM and UV/vis absorption spectrum were used to characterize the magnetite nanoparticles. It was found that the formation of magnetite was accelerated in ethanol–water solution in the presence of ultrasonic irradiation, whereas, it was limited in ethanol–water solution under mechanical stirring. The monodispersibility of magnetite particles was improved significantly through the sonochemical synthesis in ethanol–water solution. The magnetic properties were improved for the samples synthesized under ultrasonic irradiation. This would be attributed to high Fe2+ concentration in the magnetite cubic structure.  相似文献   

14.
A sonochemical method has been developed to synthesize shear thickening fluid. This shear thickening fluid (STF) is composed of hard silicon dioxide nanoparticles and polyethylene glycol (PEG) liquid polymer. The combination of flow-able and hard components at a particular composition, results a material with remarkable rheological properties that is suitable for liquid body armor applications. In the present study nine types of STF’s have been synthesized with two different types of silica nanoparticles (15 nm and 200 nm) and polyethylene glycol at various weight fractions using a high intensity ultrasonic irradiation. The resultant STF samples were tested for their rheological and thermal properties. The advantages and disadvantages of this process have been discussed.  相似文献   

15.
Permeation and sorption of methane and n-butane gases in polydimethylsiloxane (PDMS) and diphenylsiloxane-dimethylsiloxane (DPh-DM) block copolymer membranes were studied at room temperature and different upstream pressures. The membranes were prepared via room temperature vulcanization of vinyl terminated siloxanes through platinum catalyzed hydrosilylation reactions by mixing stoichiometric amounts of polymer, crosslinker, and catalyst, and casting of the mixture solutions with hexane. Composite membranes of polysiloxanes on a polyacrylonitrile microporous support were synthesized for permeation experiments and single layer dense films were used in sorption experiments. The effect of upstream pressure on permeability, solubility, and diffusivity of these membranes was evaluated. It was found that selectivity of the DPh-DM copolymer membrane for n-C4H10 relative to CH4 was up to 19% higher than that in PDMS membrane. Both solubility and diffusivity selectivities had positive contributions in permselectivity improvement. The improvement in selectivity was attained with less than a 6% decrease in permeability of n-C4H10. Up to 11% improvement in selectivity was also obtained in mixed gas experiment.  相似文献   

16.
Silver-decorated silica spheres of submicrometer-sized silica spheres with a core-shell structure were obtained based on a seed-mediated growth process, where silver nanoparticles were firstly formed from reducing Ag+ to Ag0 in N,N-dimethylformamide (DMF) in the presence of poly(vinylpyrrolidone) (PVP) as protective agent under ultrasound irradiation, followed by the growth of silver shell served silver nanoparticles as nucleation sites and formaldehyde as reducer. The results revealed that the terms of PVP addition and ultrasonic surroundings had great influence on the fabrication of silver seeds.  相似文献   

17.
Semiconductor photocatalytic technology is a sustainable and less energy consuming one for nitrogen (N2) reduction to produce ammonia (NH3). In this study, flower-like hierarchical N doped MoS2 (N-MoS2) microsphere was synthesized as a photocatalyst by one-step solvothermal method, which was assembled by numerous interleaving nanosheets petals with thin thickness. Besides, Pt nanoparticles were loaded on the surface of N-MoS2 via photo-ultrasonic reduction method. The as-prepared Pt/N-MoS2 photocatalyst exhibited higher N2 fixation ability than that over pure MoS2 and N-MoS2, which can be attributed to that the N doping narrows the band gap, and the Schottky barrier due to the existence of Pt nanoparticles improves the charge transfer and carrier separation. The reduction of N2 with ultrasonic irradiation was also investigated under visible light irradiation to evaluate the sonophotocatalytic activity of the Pt/N-MoS2 microsphere. The results showed that the N2 reduction rate of sonophotocatalysis (133.8 µmol/g(cat)h) was higher than that of sonocatalysis and photocatalysis, which can be ascribed to the synergistic effect of ultrasound and visible light irradiation. The effects of catalyst dosage, ultrasonic power and ultrasonic pulse on the photocatalytic efficiency were also studied. Meanwhile, a possible mechanism for improved sonophotocatalytic performance was also proposed.  相似文献   

18.
Polyethersulfone (PES)/TiO2 composite membranes were prepared by phase inversion method with nano-TiO2 as additive. The influence of TiO2 on the morphologies and the performances of PES/TiO2 membranes were investigated through the methods of SEM, XRD, TGA, contact angle goniometer, mechanical strength tests and filtration experiments. The results showed that the structure of membrane was not obviously affected by addition of TiO2, and the performances such as hydrophilicity, thermal stability, mechanical strength and anti-fouling ability of membrane were enhanced through adding TiO2 nanoparticles. At 0.5 wt.% TiO2 content, the composite membrane has an excellent performance, however higher TiO2 content (than 0.5 wt.%) resulted in defective pore structure of the membranes and decline of the performances, such as permeability and mechanical strength. TGA and mechanical strength analyses indicated good compatibility between polymers and TiO2 nanoparticles.  相似文献   

19.
《Ultrasonics sonochemistry》2014,21(3):1155-1165
The bimetallic Pd–Cu nanocatalysts with different Pd loadings and ultrasonic irradiation times were sonochemically synthesized and their activities toward CO oxidation were investigated. XRD, FESEM, TEM, BET, FTIR and TG-DTG techniques were employed in nanocatalysts characterization. XRD data confirmed formation of CuAl2O4 spinel with an average crystallite size of 4.9 nm. FESEM images revealed more uniform pattern and also fewer agglomerations were observed by increasing ultrasonic irradiation time. In agreement with FESEM result, TEM images depicted nanoparticles and uniform dispersion of active phase over alumina. BET surface analysis showed that increasing the Pd loading has no significant effect on surface area; whereas by increasing irradiation time the surface area increases slightly. Catalytic performance tests of synthesized samples showed that Pd(1.5%)–Cu(20%)/Al2O3 with 95 min ultrasonic irradiation time had the best activity over the course of reaction. In addition, increasing CO at feed composition revealed that among synthesized nanocatalysts with 0.5%, 1% and 1.5% of Pd, synthesized sample with 1.5% of Pd had the best low-temperature activity.  相似文献   

20.
Effect of TiO2 nanoparticle size on the performance of PVDF membrane   总被引:1,自引:0,他引:1  
The comparison of the performance and morphology was carried out between neat PVDF membrane and PVDF composite membranes with nanosized TiO2 particles of different size. The results of permeability and instrumental analysis illustrated that nanometer size obviously affected the performance and structure of the PVDF membranes. The smaller nanoparticles could improve the antifouling property of the PVDF membrane more remarkably. The surface and cross-section of the membranes were observed with an atomic force microscopy (AFM), a scanning electron microscope (SEM). The TiO2/PVDF membrane with smaller nanoparticles had smaller mean pore size on its surface and more apertures inside the membrane. X-ray diffraction (XRD) experiments also suggested that smaller TiO2 nanoparticles had stronger effect on the crystallization of PVDF molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号