首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
神光II激光装置升级完成后,激光能量将大幅提高,同时配备皮秒拍瓦激光束,能够满足快点火研究在万焦耳级平台开展集成实验的需求.神光II升级装置设计原则是以间接驱动为主,兼顾直接驱动.尽管直接驱动只是替代方案,然而由于直接驱动在快点火预压缩中具备一定优势,如能量利用率较高、对快点火导引锥预热较少、便于诊断等,因此需要探索基于神光II升级装置的直接驱动快点火靶设计.本文针对神光II升级装置的激光条件,利用辐射流体程序Multi1D对集成实验用快点火直接驱动靶的尺寸进行了初步内爆压缩设计和优化.在激光条件固定的情况下,优化无充气单层靶球的半径、厚度,尽可能实现高的密度、面密度.得到最优靶参数为外半径420μm,壳层厚度35μm,与靶球定标关系验证一致.根据超热电子定标关系,计算表明压缩过程实现的最高面密度与皮秒拍瓦激光产生的超热电子射程基本匹配.  相似文献   

2.
快点火激光惯性约束聚变将压缩与点火过程分开,与中心点火方式相比,大大放宽了对压缩对称性和能量的要求,是国际惯性约束聚变研究的热点方向。在神光Ⅱ装置上开展的快点火锥壳靶预压缩实验中,背光分幅图像显示导引锥及输运丝对靶丸预压缩过程无明显影响,实验结果与一维数值模拟结果吻合也证明了该结论;实验中通过调节导引锥尺寸和相对靶丸的位置,可保证最大压缩时刻导引锥保存完好,这对超热电子的输运以及能量沉积是至关重要的。  相似文献   

3.
在神光Ⅱ升级装置上完成了国际上首次间接驱动快点火集成实验。实验采用双台阶脉冲整形激光注入黑腔产生X射线准等熵压缩锥壳靶,实现了高密度压缩,然后采用皮秒超短脉冲激光注入加热燃料。实验中观测到中子产额由皮秒激光注入前的5×103增加到2.2×105,中子产额增益达到44倍,实验证实了皮秒激光具有明显燃料加热效果。该实验为进一步开展快点火热斑形成效率和相关物理研究奠定了基础。  相似文献   

4.
在神光Ⅱ激光装置上,针对外径260 m的柱形靶,采用大焦斑拼接的办法(焦斑直径约200 m),开展了八路激光直接驱动压缩实验。利用第九路激光驱动钼X射线背光,使用Kirkpatrick-Baez显微镜成像以及条纹相机记录的方法,获得了柱形靶内爆流线图,据此给出的压缩后密度约为初始密度的120倍。该密度处于快点火电子产生区和能量沉积区密度之间,正是电子束需要传输的密度区域。神光Ⅱ皮秒激光运行后,可以利用这种压缩的柱形靶开展电子束在稠密等离子体中传输的实验研究。  相似文献   

5.
 结合快点火靶丸预压缩涉及的基本物理问题,分析了驱动激光脉冲波形对材料压缩过程的影响,并利用辐射流体力学程序MULTI模拟了不同激光波形下的材料压缩情况。结果表明:通过调节激光脉冲波形,优化激光初始强度、激光强度开始上升时间和上升速度,控制压缩过程中的熵增,可以获得更高的材料压缩度。  相似文献   

6.
双壳层靶中,由于燃料被高Z壳层包裹,其点火方式要求燃料整体点火,不同于单壳层中心热斑点火。结合点火条件和对于其中物理过程的认识,设计了间接驱动的冷冻双壳层点火靶。利用冷冻的氘氚(DT)燃料,可适当提高双壳层靶的燃料装量,获得和NIF装置条件下中心热斑点火靶相当的放能。间接驱动下,X射线烧蚀并驱动外壳层碰撞内壳层,把能量传递给内壳层,进而压缩和点燃冷冻的DT燃料。壳层碰撞过程是能量传递的关键,通过调整内外壳层的质量比,提高了碰撞效率,相应地降低了靶丸点火的能量需求。一维数值模拟分析了该点火靶的内爆过程及定性分析了其中的流体力学不稳定性。同时,也指出了泡沫中形成的辐射冲击波对内壳层的预热效应,即辐射冲击波的致稳效应,能够很好地抑制内壳层外界面处的不稳定性发展,进而会减弱高Z内壳层和燃料的混合。  相似文献   

7.
在双锥对撞点火激光核聚变方案中,两个锥口相距约100μm放置的金锥内氘氚球冠靶在高功率纳秒激光烧蚀驱动下,获得沿金锥的球对称压缩和加速,形成沿着金锥轴向的超音速高密度喷流,出射喷流在两个金锥的几何中心发生对撞减速并形成聚变密度等离子体.在对撞过程中,高速运动喷流的动能转化为内能,实现对等离子体的预加热,与此同时,皮秒拍瓦激光产生的高能快电子从垂直方向入射并加热高密度等离子体,使其快速升温达到聚变温度,实现聚变点火. 2020年在中国科学院上海光学精密机械研究所高功率激光联合实验室神光Ⅱ升级激光装置上,我们利用总能量为10 kJ的八路纳秒激光进行了两轮实验.实验利用包括X射线汤姆逊散射、硬X射线单色背光成像、X射线条纹和分幅成像等多种主动、被动诊断方法对超音速高密度喷流对撞过程进行了高时空分辨研究,实验测量发现,在单锥口形成的超音速等离子体喷流密度为5.5—8 g/cm~3;在对撞过程中形成了阻滞时间约200 ps的高密度等离子体,中心密度达到了(46±24) g/cm3.通过对等离子的温度、速度的分析发现,对撞过程中动能到内能的转换效率高达89.5%.  相似文献   

8.
利用PIC(particle-in-cell)方法模拟研究了超短强激光与锥型三明治结构靶相互作用快电子束的产生和传输,并与锥通道靶、锥丝靶和锥靶在相同激光参数下的作用结果进行了比较.研究发现强激光与锥三明治靶作用产生的快电子能被不同密度材料产生的准静态界面强磁场有效地准直传输.相对其他三种锥型结构靶,锥三明治靶能产生更多数目及更高能量的快电子,提高了激光到快电子的能量转换效率和快电子束的品质,这对快点火能量沉积是有利的.  相似文献   

9.
方可  张喆  李玉同  张杰 《物理学报》2022,(3):228-236
直接驱动激光聚变通过整形后的纳秒脉冲激光辐照氘氚(DT)球壳靶,经球对称压缩加速后,在中心转滞获得高温等离子体热斑,实现聚变点火.在球壳靶受到压缩和加速过程中等离子体界面的流体力学不稳定性,特别是瑞利-泰勒不稳定性的增长有可能会对压缩壳层造成破坏,导致点火的失败.本文通过理论解析和数值模拟,对基于Zhang等提出的双锥对撞点火方案(2020 Philos.Trans.A Math.Phys.Eng.Sci.378 20200015)在2020年冬季实验条件下的流体力学不稳定性增长进行了分析.结果显示理论模型与一维数值模拟中对整体压缩和加速过程的描述基本一致,在当前的近等熵波形下金锥中的壳层靶实现了低熵压缩,同时瑞利-泰勒不稳定性增长导致的最危险时刻扰动振幅和壳层厚度比可以达到约0.25,壳层依然处于安全状态,但当初始壳层表面扰动均方根振幅大于22 nm时,则可能出现壳层的破裂.因此,未来实验中的靶设计与驱动激光脉冲波形设计中可以通过增加靶壳层厚度、提高预脉冲强度、减小靶表面的粗糙度和提高激光辐照的匀滑度等方式来抑制不稳定性增长.  相似文献   

10.
为了给快点火集成耦合效率的计算提供关键参数,并为后期高密度压缩奠定高能背光的诊断基础,在神光-Ⅱ升级装置上利用皮秒短脉冲激光驱动产生了X射线背光源,测量了成像分辨率、光通量,获得了短脉冲背光源的辐射特性,进一步成功演示了基于这种短脉冲背光照相技术的间接驱动快点火预压缩密度诊断。实验所得图像与模拟图像结构一致,实测压缩过程中的面密度达到50 mg/cm2。实验还发现了压缩不对称引起的流体不稳定性特征,为后续实验提供了改进方向。  相似文献   

11.
We propose a foam cone-in-shell target design aiming at optimum hot electron production for the fast ignition. A thin low-density foam is proposed to cover the inner tip of a gold cone inserted in a fuel shell. An intense laser is then focused on the foam to generate hot electrons for the fast ignition. Element experiments demonstrate increased laser energy coupling efficiency into hot electrons without increasing the electron temperature and beam divergence with foam coated targets in comparison with solid targets. This may enhance the laser energy deposition in the compressed fuel plasma.  相似文献   

12.
王宬朕  董全力  刘苹  吴奕莹  盛政明  张杰 《物理学报》2017,66(11):115203-115203
直接驱动惯性约束聚变(ICF)的实现需要对靶丸进行严格的对称压缩,以达到自持热核反应(点火)所需的条件.快点火方案的应用降低了对靶丸压缩对称性以及驱动能量的要求,但压缩及核反应过程中良好的靶丸对称性无疑有助于核反应增益的提高.本文研究了快点火方案中高能电子注入高密等离子体后导致的各向异性电子的压强张量.这一现象存在于ICF快点火方案中的高能电子束"点火"及核反应阶段.鉴于高能电子加热离子过程以及靶丸核反应自持燃烧过程的时间较长,高密靶核会由于超高的各向异性压强的作用破坏高密靶丸的对称性,降低核燃料密度,进而降低了核燃料燃烧效率以及核反应增益.  相似文献   

13.
本文提出一种基于单束激光直接加热多层平面靶开展 稠密等离子体辐射不透明度特性研究的靶物理设计并对其进行了实验验证. 在XG-II激光装置上, 采用三倍频束匀滑激光辐照Au/CH/Al/CH多层平面靶产生背光源和Al样品等离子体, 通过观测背光源经样品等离子体衰减后的透过谱得到样品等离子体的辐射吸收性质. 采用Multi-1D程序对激光加热多层靶进行了辐射流体力学数值模拟, 给出了样品等离子体状态及其时间演化过程. 利用细致谱项模型 (DTA) 对实验测量的Al等离子体吸收谱进行理论分析, 表明等离子体温度在20–70 eV之间, 该结果与辐射流体力学模拟结果基本一致. 关键词: 吸收光谱 自背光 激光等离子体  相似文献   

14.
A general concept of fast ignition by a hydrodynamic pulse is developed. The main statements of the concept are formulated having in mind the need to ignite the pre-compressed thermonuclear fuel of the inertial confinement fusion (ICF) target. Initially, combustion must be initiated inside the hydrodynamic flow during its action on the target. The conditions for propagating a self-sustaining thermonuclear-detonation wave from an igniter on the thermonuclear fuel of the ICF-target must be provided. For this, the deuterium–tritium (DT) igniter placed in the forward part of the hydrodynamic flow should not only be heated up to thermonuclear temperature, but also compressed to a density close to the density of the ICF-target fuel. It is shown that the detonation of the multilayer conical target (containing DT-ice and a heavy pusher) enables fast ignition of the ICF target fuel of 200–500 g/cm3 density at an implosion velocity of 300–500 km/s.  相似文献   

15.
We investigate the efficiency of inertial fusion target compression, where at the initial time moment the thermonuclear fuel is in a two-phase state and has the form of two adjacent layers — the external DT-liquid layer and the internal DT-ice layer. We study this problem for the fast ignition targets, where the ultimate final density of the thermonuclear matter is of a special importance. We take the simplest type of a fast ignition target, which corresponds to the technical justification of the HiPER Project aimed at demonstrating fast ignition at the compressing laser pulse energy ~100 kJ. Such a target presents a spherical DT-ice shell coated with a thin polymer film. We obtain the dependence of the final target density on the mass fraction of the DT-matter liquid phase and formulate the requirements on the admissible concentration of liquid phase if the decrease in the DT-fuel final density does not exceed 10%. We find the criterion for choosing the laser-pulse duration which provides the minimum decrease in the final density of the target containing DT-matter in the initial two-phase state.  相似文献   

16.
Review of Japanese fusion program and role of inertial fusion   总被引:1,自引:0,他引:1  
The high compression of 600 times liquid density and the recent fast heating of a compressed core to 1-keV temperature have provided proof-of-principle of the fast ignition concept, and these results have significantly contributed to approve first phase of the Fast Ignition Realization EXperiment (FIREX) project. The goal of FIREX-I is to demonstrate fast heating of a fusion fuel up to the ignition temperature of 5–10 keV. Although the fuel size of FIREX-I is too small to ignite, sufficient heating will provide the scientific viability of ignition-and-burn by increasing the laser energy thereby the fuel size. Based on the result of FIREX-I, the decision of the start of FIREX-II to achieve ignition-and-burn can be made. The FIREX program is under the collaboration of the Institute of Laser Engineering and the National Institute for Fusion Science.  相似文献   

17.
张晓梅  沈百飞 《光学学报》2006,26(10):594-1597
研究了整形激光脉冲对冰冻氘氚靶的压缩。通过数值分析,发现利用分步激光产生的系列激波压缩氘氚靶可以获得较高密度和较低温度的等离子体靶。初始激光强度的选取将影响到压缩后的等离子体密度,继而影响到产生中子的数量。通过调节初始激光强度可以使压缩后的氘氚靶温度处在反应率比较高的范围内,从而得到优化结果。当初始归一化激光振幅为0.5,最终为32时,压缩后的氘氚靶密度可达到18416倍的临界密度,温度达到16 keV,每焦耳入射激光能量可得到109个中子,这个中子产额比现有其他方法所得到的中子产额大4个数量级。  相似文献   

18.
为了研究惯性约束聚变(ICF)实验用靶丸不同密度界面的流体力学不稳定性增长,设计并制备了聚苯乙烯(CH)/碳气凝胶(CRF),CRF/硅气凝胶(SiO2)和CH/Al三种双介质调制靶。采用溶胶-凝胶工艺制备了密度分别为250和800mg/cm3的CRF气凝胶薄片;采用激光微加工工艺分别在两种不同密度的CRF薄片和工业用纯Al箔上引入调制图形;采用旋涂工艺在Al箔和CRF薄片(250mg/cm3)的调制表面制备一层CH薄膜,得到CH/Al和CH/CRF双介质调制靶,采用溶胶-凝胶工艺在CRF薄片(800mg/cm3)表面制备一层低密度SiO2气凝胶,得到CRF/SiO2双介质调制靶。采用电子天平、扫描电子显微镜、工具显微镜和台阶仪对所制备的CH/CRF,CRF/SiO2和CH/Al三种双介质调制靶进行靶参数测量。结果表明:三种双介质调制靶层与层之间结合紧密,界面清晰,调制图形为正弦,靶参数测量准确。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号