首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 765 毫秒
1.
以活化的天然石墨为碳源,采用固相辅助回流法成功合成了双相碳改性的Li2FeSiO4复合材料。采用XRD、SEM、HRTEM和Raman光谱分析了Li2FeSiO4/(C+G)复合材料的物相、形貌及其微观结构;并研究了活化石墨用量对Li2FeSiO4/(C+G)复合材料的电化学性能的影响。结果表明:活化石墨以石墨微晶和无定形碳的形态共存于Li2FeSiO4/(C+G)材料中,活化石墨用量为5%时所得样品的首次放电容量较高(170.3 mAh·g-1),循环50次后其容量保持率为88.7%,表现出了良好的电化学性能。  相似文献   

2.
Li4Ti5O12/(Ag+C)电极材料的固相合成及电化学性能   总被引:1,自引:0,他引:1  
以Li2CO3,TiO2为原料,葡萄糖为碳源,采用固相煅烧工艺合成了亚微米级的Li4Ti5O12/C复合负极材料。并将之与AgNO3复合,采用固相方法制备出了Ag表面修饰的Li4Ti5O12/(Ag+C)复合材料。采用XRD、SEM和TEM测试方法对材料的微结构进行了表征。结果表明,C的存在对Ag单质在Li4Ti5O12/C颗粒表面的大量形成起到了积极的促进作用,从而很大程度地提高了Li4Ti5O12/C的电导率,因此有效地改善了其电化学性能。在1C倍率下,Li4Ti5O12/(Ag+C)复合材料的首次放电容量达到了164 mAh·g-1。  相似文献   

3.
Li4Ti5O12/(Cu+C)复合材料的制备及电化学性能   总被引:1,自引:0,他引:1  
以Li4Ti5O12,Cu(CH3COO)2·H2O和C6H12O6为前驱体,化学沉积与热分解结合合成锂离子电池负极材料Li4Ti5O12/(Cu+C)。采用X-射线衍射(XRD)、扫描电子显微镜(SEM)、恒流充放电、循环伏安和电化学阻抗方法表征样品的结构、形貌和电化学性能。结果表明,Li4Ti5O12表面包覆的Cu与C提高了Li4Ti5O12电极材料的导电率,其循环性能和倍率性能得到有效地改善。在0.5C、1C和3C倍率下,经过50次充放电循环,放电比容量分别为168.2、160、140.6 mAh·g-1,其容量保持率分别为88.7%、84.4%、71.2%。电化学阻抗测试表明,表面包覆的Cu与C使其电荷转移阻抗大幅度减少。  相似文献   

4.
采用水基流变相辅助的固相法,以异质碳蔗糖和石墨为碳源,合成了LiMn0.8Fe0.2PO4/C复合材料,研究了不同石墨加入方式对所制复合材料电化学性能的影响,并对所制备的LiMn0.8Fe0.2PO4/C复合材料进行了X射线衍射(XRD)、N2吸附-脱附测试、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等表征。结果表明,不同石墨包覆工艺对材料结构和电化学性能具有显著影响。前驱体煅烧后再加入石墨获得的样品纯度高,形貌呈均一的椭圆形,在0.1C下的放电比容量为149 mAh·g-1,达到其理论比容量的87%;在5C下最大的放电比容量为133 mAh·g-1;在2C倍率下经过300次循环后比容量维持在127 mAh·g-1,衰减率仅为1.9%,表现出了优良的循环稳定性。  相似文献   

5.
采用水基流变相辅助的固相法,以异质碳蔗糖和石墨为碳源,合成了LiMn0.8Fe0.2PO4/C复合材料,研究了不同石墨加入方式对所制复合材料电化学性能的影响,并对所制备的LiMn0.8Fe0.2PO4/C复合材料进行了X射线衍射(XRD)、比表面积测试、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等表征。结果表明,不同石墨包覆工艺对材料结构和电化学性能具有显著影响。前驱体煅烧后再加入石墨获得的样品纯度高,形貌呈均一的椭圆形,在0.1C下的放电比容量为149 mAh·g-1,达到其理论比容量的 87%;在 5C 下最大的放电比容量为 133 mAh·g-1;在 2C 倍率下经过 300 次循环后比容量维持在 127 mAh·g-1,衰减率仅为1.9%,表现出了优良的循环稳定性。  相似文献   

6.
将LiNO3和Ti(OC4H9)4填填充在有序介孔碳CMK-3 孔道中, 然后烧结合成了Li4Ti5O12/CMK-3复合材料. 利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射(XRD)对其结构和微观形貌进行了表征. 利用差热-热重分析(TG-DTA)测试复合材料中Li4Ti5O12的含量. 利用充放电测试、循环伏安和电化学阻抗技术考察了复合材料作为锂离子电池负极材料的性能. 发现Li4Ti5O12分布在CMK-3孔道中及其周围, 复合材料的高倍率充放电性能显著优于商品Li4Ti5O12, 复合材料中Li4Ti5O12的比容量明显高于除去CMK-3的样品(在1C倍率时比容量为117.8 mAh·g-1), 其0.5C、1C和5C倍率的放电比容量分别为160、143 和131 mAh·g-1, 库仑效率接近100%, 5C倍率时循环100次的容量损失率只有0.62%. 本研究结果表明CMK-3明显提高了Li4Ti5O12的高倍率充放电性能, 可能是CMK-3特殊的孔道结构和良好的导电性减小了Li4Ti5O12的粒径并提高了其电导率.  相似文献   

7.
以醋酸锂和钛酸四丁酯为原料,以乙醇为溶剂,采用溶胶-凝胶法制备Li4Ti5O12;以苯胺、过硫酸铵为原料,以盐酸为溶剂,采用原位聚合法合成Li4Ti5O12-聚苯胺复合材料。采用X-射线衍射、红外光谱和电化学测试等对复合材料进行了表征。结果表明,聚苯胺的加入明显提高了Li4Ti5O12的电子导电性能,Li4Ti5O12-PAn复合材料具有比Li4Ti5O12更好的高倍率性能和循环稳定性。0.1C和2.0C放电时Li4Ti5O12-PAn的放电容量达到了191.3和148.9 mAh·g-1,经80次循环后二者平均每次循环容量衰减率分别为0.13%和0.61%。  相似文献   

8.
以MoO42-部分取代Li3Fe2(PO43中的PO43-,研究表明:加入的MoO42-离子主要以固溶形式存在于Li3Fe2(PO43中,起到了显著改善其电化学性能的作用。其中,MoO42-掺杂浓度为0.3的样品表现出最佳的电化学性能,其在0.5C倍率下的首次放电容量为113.7 mAh·g-1,这一数值比未掺杂的提高了20.7%;经过60次循环充放电,容量保持率为94%。将放电倍率从0.5C逐步增大至5C,再降至初始的0.5C,并在每个倍率循环10次,这一材料的最终放电容量可达首次0.5C的95%。这些优异的性能应归因于MoO42-掺杂使材料的氧化还原能力增强,氧化还原电对的电势差减小,电池内部的电荷转移电阻减小,以及Li+扩散系数增加。  相似文献   

9.
以Li13Si4和SiCl4为原料,通过简单的机械球磨法合成多孔硅/碳复合材料,通过控制Li13Si4颗粒的尺寸可以有效调节产物的比表面积。分别研究了包覆碳含量、多孔硅/SuperP(导电碳)比表面积以及极片活性物质负载量对多孔硅/碳复合材料电化学性能的影响。结果表明:多孔硅/SuperP比表面积为100.9m2·g-1,化学气相沉积(CVD)包覆碳含量为25.3wt%(约6nm厚)的复合材料具有最高的电化学活性,在300mA·g-1的电流密度下,循环可逆比容量达到1900mAh·g-1,50次循环后容量仅衰减7.6%。  相似文献   

10.
以乙酸盐(乙酸锂、乙酸钠、乙酸钴、乙酸镍、乙酸锰等)为原材料,采用球磨辅助高温固相法制备Li1.0Na0.2Ni0.13Co0.13Mn0.54O2正极材料。借助XRD、SEM等表征材料的结构和形貌,利用循环伏安、恒流充放电、交流阻抗等方法研究材料的电化学性能。结果表明,钠的掺杂导致颗粒表面光滑度降低,形成Na0.77MnO2.05新相。0.05C活化过程中,掺钠样品和未掺钠样品首次放电比容量分别为258.4 mAh·g-1和215.8 mAh·g-1,库伦效率分别为75.2%和72.8%;2C放电比容量分别为116.3 mAh·g-1和106.2 mAh·g-1。研究发现,掺钠可减小首次充放电过程的不可逆容量,提高容量保持率;改善倍率性能与容量恢复特性;降低SEI膜阻抗和电荷转移阻抗;掺钠后样品首次循环就可以基本完成Li2MnO3组分向稳定结构的转化,而未掺杂的样品需要两次循环才能逐步完成该过程;XPS结果表明,掺钠样品中Ni2+、Co3+、Mn4+所占比例明显提高,改善了样品的稳定性和电化学性能;循环200次后的XRD结果表明掺钠与未掺钠材料在脱嵌锂反应中的相变化过程基本一致,良好有序的层状结构遭到破坏是循环过程中容量衰减的主要原因。  相似文献   

11.
Li2FeSiO4/C cathode materials have been prepared using the conventional solid-state method by varying the sintering temperature (650 °C, 700 °C and 750 °C), and the structure and electrochemical performance of Li2FeSiO4/C materials are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic charge–discharge tests, respectively. The results show that Li2FeSiO4 nano-crystals with a diameter of about 6–8 nm are inbedded in the amorphous carbon, and the Li2FeSiO4/C material obtained at 700 °C exhibits an initial discharge capacity of 195 mA?h g?1 at 1/16 C in the potential range of 1.5–4.8 V. The excellent electrochemical performance of Li2FeSiO4/C attributes to the improvement of conductivity and reduction of impurity by the optimization of the sintering temperature.  相似文献   

12.
Natural graphite treated by mechanical activation can be directly applied to the preparation of Li3V2(PO4)3. The carbon-coated Li3V2(PO4)3 with monoclinic structure was successfully synthesized by using natural graphite as carbon source and reducing agent. The amount of activated graphite is optimized by X-ray diffraction, scanning electron microscope, transmission electron microscope, Raman spectrum, galvanostatic charge/discharge measurements, cyclic voltammetry, and electrochemical impedance spectroscopy tests. Our results show that Li3V2(PO4)3 (LVP)-10G exhibits the highest initial discharge capacity of 189 mAh g?1 at 0.1 C and 162.9 mAh g?1 at 1 C in the voltage range of 3.0–4.8 V. Therefore, natural graphite is a promising carbon source for LVP cathode material in lithium ion batteries.  相似文献   

13.
The key parameters related to cathode materials for commercial use are a high specific capacity, good cycling stability, capacity retention at high current rates, as well as the simplicity of the synthesis process. This study presents a facile synthesis of a composite cathode material, Li2FeSiO4 with carbon, under extreme conditions: rapid heating, short dwell at 750 °C and subsequent quenching. The water-soluble polymer methylcellulose was used both as an excellent dispersing agent and a carbon source that pyrolytically degrades to carbon, thereby enabling the homogeneous deployment of the precursor compounds and the control of the Li2FeSiO4 particle growth from the earliest stage of processing. X-ray powder diffraction reveals the formation of Li2FeSiO4 nanocrystallites with a monoclinic structure in the P21/n space group (#14). The composite’s electrochemical performance as a cathode material in Li-ion batteries was examined. The influence of the amount of methylcellulose on the microstructural, morphological, conductive, and electrochemical properties of the obtained powders has been discussed. It has been shown that the overall electrochemical performance is improved with an increase of carbon content, through both the decrease of the mean particle diameter and the increase of electrical conductivity.  相似文献   

14.
First principles calculations are used to anticipate the electrochemistry of polyoxoanionic materials consisting of XO4 − yAy (A = F, N) groups. As an illustrative case, this work focuses on the effect of either N or F for O substitution upon the electrochemical properties of Li2FeSiO4. Within the Pmn21–Li2FeSiO4 structure, virtual models of Li2Fe22.5+SiO3.5N0.5 and Li1.5Fe2+SiO3.5F0.5 have been analyzed. We predict that the lithium deinsertion voltage associated to the Fe3+/Fe4+ redox couple is decreased by both substituents. The high theoretical specific capacity of Li2FeSiO4 (330 mAh/g) could be retained in N-substituted silicates thanks to the oxidation of N3− anions, whilst Li1.5Fe2+SiO3.5F0.5 has a lower specific capacity inherent to the F substitution. Substitution of N/F for O will respectively improve/worsen the electrode characteristics of Li2FeSiO4.  相似文献   

15.
Li2FeSiO4 cathode materials have been prepared by sol-gel method. The effects of carbon sources on the structural, morphological and electrochemical behaviors of Li2FeSiO4 were investigated. The scanning electronic microscope (SEM) and X-ray diffraction powder analysis (XRD) indicate that the obtained samples using different carbon sources possess some difference in the morphology and in the particle size. The sample using the mixture of citric acid and oxalic acid as carbon source has a maximum discharge capacity of 118 mA h g?1 at 0.1 C between 1.8 and 4.5 V. The resulting cyclic voltammograms and electrochemical impedance spectra suggest that the sample using mixed acid as carbon source has smaller polarization and smaller charge transfer impedance.  相似文献   

16.
通过溶胶-凝胶法制备了Li2FeSiO4@C/CNTs(LFS@C/CNTs)纳米复合材料,其中三嵌段共聚物P123用作结构导向剂和碳源,碳纳米管作为导电线提高材料的导电性。LFS@C/CNTs不仅具有海绵状纳米孔,能够与电解液充分接触改善锂离子的传输路径,同时由非晶碳和碳纳米管构成的三维桥联导电网络利于电子的快速传递,提高了材料大电流充放电能力和循环稳定性。复合后的LFS@C/CNTs的高倍率性能相比LFS@C明显提高, 当CNTs的掺量为4%,电压窗口为1.5~4.5 V,0.1C电流密度下放电比容量为182 mAh·g-1。在10C经70次循环后该材料的放电比容量能保持在117 mAh·g-1,是LFS@C放电比容量(55 mAh·g-1)的两倍。  相似文献   

17.
以V2O5、NH4H2PO4、LiOH、柠檬酸、三嵌段聚合物表面活性剂P123为原料, 用流变相(RPR)法制备了Li3V2(PO4)3/C正极材料. 用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)等方法表征, 结果表明: 材料为单一纯相的单斜晶体结构, 颗粒均匀并呈现珊瑚结构; 恒流充放电, 循环伏安(CV)及电化学交流阻抗(EIS)等电化学性能测试表明, 采用P123 辅助合成材料电化学性能明显优于未采用P123 辅助合成材料. 3.0-4.3 V放电区间, 0.1C充放电下P123 辅助合成Li3V2(PO4)3/C材料首次放电比容量为129.8 mAh·g-1, 经过50 次循环后容量只衰减0.9%; 倍率性能及循环性能优异, 1C、10C、25C的首次放电比容量分别为128.2、121.3、109.1 mAh·g-1, 50次循环后容量保持率分别为99.1%, 96.9%, 90.7%. 这归因于三嵌段聚合物P123 作为分散剂的同时也作为有机碳源在颗粒表面及间隙形成碳网络, 有利于材料导电率的改善, 降低了其电荷转移阻抗, 减小了电极充放电过程的极化现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号